ORGANIC
LETTERS
2004
Vol. 6, No. 4
625-627
Enantioselective Aza-Henry Reaction
Catalyzed by a Bifunctional
Organocatalyst
Tomotaka Okino, Satoru Nakamura, Tomihiro Furukawa, and Yoshiji Takemoto*
Graduate School of Pharmaceutical Sciences, Kyoto UniVersity,
Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
Received December 17, 2003
ABSTRACT
The aza-Henry reaction of imines with nitroalkanes was promoted by chiral thiourea with an N,N-dimethylamino group to give â-nitroamines
with good enantioselectivity. Various N-protected imines were examined as substrates. N-Phosphinoylimine gave the best result in terms of
chemical yield and enantioselectivity (up to 91% yield, up to 76% ee).
The aza-Henry reaction, the nucleophilic addition of nitro-
alkanes to imines to give â-nitroamine derivatives, is a useful
carbon-carbon bond-forming process in organic chemistry.
The diversity of the transformations of the â-nitroamines,
such as reduction to 1,2-diamines1 and Nef reaction to
R-amino acids,2 provides numerous applications of this
process.3-6 The enantioselective version of this reaction was
not known until quite recently.7-10 To the best of our
knowledge, there were only two groups that had reported
on catalytic asymmetric aza-Henry reaction and all of the
reactions reported were metal-catalyzed. Shibasaki et al.
reported that heterobimetallic complexes with lanthanide
BINOL systems promoted the aza-Henry reaction to give
â-nitroamines with high enantioselectivity.9 Jørgensen et al.
also developed a catalytic asymmetric version of this reaction
with bisoxazoline copper(II) complexes.10
Although urea derivatives are known to act as acid
catalysts in several reactions,11 enantioselective reactions
were rare (Figure 1).12 We have recently reported novel
(1) (a) Beck, A. K.; Seebach, D. Chem. Ber. 1991, 124, 2897-2911.
(b) Poupart, M. A.; Fazal, G.; Goulet, S.; Mar, L. T. J. Org. Chem. 1999,
64, 1356-1361. (c) Barrett, A. G. M.; Spilling, C. D. Tetrahedron Lett.
1988, 29, 5733-5734. (d) Lloyd, D. H.; Nichols, D. E. J. Org. Chem. 1986,
51, 4294-4295.
(2) Pinnick, H. W. Org. React. 1990, 38, 655-792.
(3) Calderari, G.; Seebach, D. HelV. Chim. Acta 1985, 68, 1592-1604.
(4) Tamura, R.; Kamimura, A.; Ono, N. Synthesis 1991, 423-434.
(5) (a) Meyer, V.; Wurster, C. Ber. Dtsch. Chem. Ges. 1873, 6, 1168-
1172. (b) Kamlet, M. J.; Kaplan, L. A.; Dacons, J. C. J. Org. Chem. 1961,
26, 4371-4375.
(6) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339-
5342.
(7) Westermann, B. Angew. Chem., Int. Ed. 2003, 42, 151-153.
(8) Adams, H.; Anderson, J. C.; Peace, S.; Pennell, A. M. K. J. Org.
Chem. 1998, 63, 9932-9934.
(9) (a) Yamada, K.; Harwood, S. J.; Gro¨ger, H.; Shibasaki, M. Angew.
Chem., Int. Ed. Engl. 1999, 38, 3504-3506. (b) Yamada, K.; Moll, G.;
Shibasaki, M. Synlett 2001, 980-982. (c) Tsuritani, N.; Yamada, K.;
Yoshikawa, N.; Shibasaki, M. Chem. Lett. 2002, 276-277.
(10) (a) Knudsen, K. R.; Risgaard, T.; Nishiwaki, N.; Gothelf, K. V.;
Jørgensen, K. A. J. Am. Chem. Soc. 2001, 123, 5843-5844. (b) Nishiwaki,
N.; Knudsen, K. R.; Gothelf, K. V.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2001, 40, 2992-2995.
(11) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. Tetrahedron Lett. 2003,
44, 2817-2821. (b) Curran, D. P.; Kuo, L. H. J. Org. Chem. 1994, 59,
3259-3261. (c) Curran, D. P.; Kuo, L. H. Tetrahedron Lett. 1995, 36,
6647-6650. (d) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217-
220. (e) Wittkopp, A.; Schreiner, P. R. Chem. Eur. J. 2003, 9, 407-414.
(f) Schreiner, P. R. Chem. Soc. ReV. 2003, 32, 289-296.
10.1021/ol0364531 CCC: $27.50 © 2004 American Chemical Society
Published on Web 01/27/2004