10.1002/adsc.202000795
Advanced Synthesis & Catalysis
C. R. Bertozzi, Proc. Natl. Acad. Sci. USA 2007, 104,
16793; b) J. C. Jewetta, C. R. Bertozzi, Chem. Soc. Rev.
2010, 39, 1272.
also developed for the 1,3-dipolar cycloaddition
reaction by in situ generation of the organic azide
from the corresponding halide. This further
demonstrates the potential of the micellar system in
terms of efficacy and the overall green aspect of the
process.
[6] J. Dommerholt, F. P. J. T. Rutjes, F. L. van Delft, Top.
Curr. Chem. 2016, 374, 16.
[7] a) J. John, E. Gravel, A. Hagège, H. Li, T. Gacoin, E.
Doris, Angew. Chem. Int. Ed. 2011, 50, 7533; b) D.V.
Jawale, E. Gravel, E. Villemin, N. Shah, V. Geertsen, I.
N. N. Namboothiri, E. Doris, Chem. Commun. 2014, 50,
15251; c) D. V. Jawale, E. Gravel, C. Boudet, N. Shah,
V. Geertsen, H. Li, I. N. N. Namboothiri, E. Doris,
Chem. Commun. 2015, 51, 1739; d) D. Clarisse, P.
Prakash, V. Geertsen, F. Miserque, E. Gravel, E. Doris,
Green Chem. 2017, 19, 3112; e) E. Gopi, E. Gravel; E.
Doris, Nanoscale Adv. 2019, 1, 1181; f) M. D. Hoang,
R. A. Kumar, D. A. Buisson, W. L. ling, E. Gravel, E.
Doris. ChemCatChem 2020, 12, 1156.
Experimental Section
General Procedure for click reactions w/o ascorbate: p1-
Cu micelles (200 µL of a 1 mM aqueous suspension, 0.2
mol%) were added to a suspension of aliphatic/aromatic
azide (0.1 mmol) and terminal alkyne (0.2 mmol) in H2O
(300 µL). The reaction mixture was stirred at room
temperature for 24 h, extracted with Et2O or AcOEt (3 × 3
mL). The combined organic phases were dried over
anhydrous Na2SO4, filtered, and concentrated under
vacuum. The crude product was purified by preparative
thin layer chromatography.
[8] A. Adenot, E. B. Landstrom, F. Gallou, B. H. Lipshutz,
General Procedure for click reactions w/ ascorbate: p1-
Cu micelles (200 µL of a 1 mM aqueous suspension, 0.2
mol%) were added to a suspension of aliphatic/aromatic
azide (0.1 mmol), terminal alkyne (0.1 mmol), and sodium
ascorbate (0.2 mmol) in H2O (300 µL). The reaction
mixture was stirred at room temperature for 2 h, extracted
with Et2O or AcOEt (3 × 3 mL). The combined organic
phases were dried over anhydrous Na2SO4, filtered, and
concentrated under vacuum. The crude product was
purified by preparative thin layer chromatography.
Green Chem. 2017, 19, 2506.
[9] a) D. Lombardo, M. A. Kiselev, S. Magazù, P.
Calandra, Adv. Cond. Matter Phys. 2015, 151683; b) J.
Alliot, I. Theodorou, D. V. Nguyen, C. Forier, F.
Ducongé, E. Gravel, E. Doris, Nanoscale 2019, 11,
9756; c) J. Alliot, I. Theodorou, F. Ducongé, E. Gravel,
E. Doris, Chem Commun. 2019, 55, 14968.
[10] a) G. La Sorella, G. Strukul, A. Scarso, Green Chem.
2015, 17, 644; b) B. H. Lipshutz, S. Ghorai, M. Cortes-
Clerget, Chem. Eur. J. 2018, 24, 6672 ; c) D. K.
Romney, F. H. Arnold, B. H. Lipshutz, C. J. Li, J. Org.
Chem. 2018, 83, 7319.
Acknowledgements
R. A. K. thanks the Enhanced Eurotalents program for support.
Dr. Annelaure Damont (CEA/DRF/DMTS/SPI) is gratefully
acknowledged for helpful discussions. The “Service de Chimie
Bioorganique et de Marquage” (SCBM) belongs to the
Laboratory of Excellence in Research on Medication and
Innovative Therapeutics (ANR-10-LABX-0033-LERMIT) and is a
partner of NOMATEN, a Centre of Excellence in Multifunctional
Materials for Industrial and Medical Applications.
[11] a) D. Paprocki, A. Madej, D. Koszelewski, A.
Brodzka, R. Ostaszewski, Front. Chem. 2018, 6, 502;
b) S. Handa, B. Jin, P. P. Bora, Y. Wang, X. Zhang, F.
Gallou, J. Reilly, B. H. Lipshutz, ACS Catal. 2019, 9,
2423; c) M. Cortes-Clerget, N. Akporji, J. Zhou, F. Gao,
P. Guo, M. Parmentier, F. Gallou, J. Y. Berthon, B. H.
Lipshutz, Nat. Commun. 2019, 10, 2169.
References
[12] a) E. Gravel, J. Ogier, T. Arnauld, N. Mackiewicz, F.
Ducongé, E. Doris, Chem. Eur. J. 2012, 18, 400; b) E.
Gravel, B. Thézé, I. Jacques, P. Anilkuma, K. Gombert,
F. Ducongé, E. Doris, Nanoscale 2013, 5, 1955; c) A.
Doerflinger, N. N. Quang, E. Gravel, G. Pinna, M.
Vandamme, F. Ducongé, E. Doris, Chem. Commun.
2018, 54, 3613; d) A. Doerflinger, N. N. Quang, E.
Gravel, F. Ducongé, E. Doris, Int. J. Pharm. 2019,
565, 59; e) M. D. Hoang, M. Vandamme, G.
Kratassiouk, G. Pinna, E. Gravel, E. Doris. Nanoscale
Adv. 2019, 1, 4331; f) F. Costamagna, H. Hillaireau, J.
Vergnaud, D. Clarisse, L. Jamgotchian, O. Loreau, S.
Denis, E. Gravel, E. Doris, E. Fattal, Nanoscale 2020,
12, 2452.
[1] For reviews on recent advances in the field of azide-
alkyne cycloadditions, see: a) E. Haldón, M. C. Nicasio
and P. J. Pérez, Org. Biomol. Chem., 2015, 13, 9528; b)
M. S. Singh, S. Chowdhury, S. Koley, Tetrahedron
2016, 72, 5257.
[2] a) J. E. Moses, A. D. Moorhouse, Chem. Soc. Rev.
2007, 36, 1249; b) P. Thirumurugan, D. Matosiuk, K.
Jozwiak, Chem. Rev. 2013, 113, 4905.
[3] R. Huisgen, Angew. Chem. Int. Ed. 1963, 2, 565.
[4] a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew.
Chem. Int. Ed.,2001, 40, 2004; b) V. V. Rostovtsev, L.
G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem.
Int. Ed. 2002, 41, 2596; c) C. W. Tornøe, C.
Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057;
d) M. Meldal and C.W. Tornøe, Chem. Rev. 2008, 108,
2952; e) J. E. Hein, V. V. Fokin, Chem. Soc. Rev. 2010,
39, 1302.
[13] a) N. Mackiewicz, E. Gravel, A. Garofalakis, J. Ogier,
J. John, D. M. Dupont, K. Gombert, B. Tavitian, E.
Doris, F. Ducongé, Small 2011, 19, 2786; b) I.
Theodorou, P. Anilkumar, B. Lelandais, D. Clarisse, A.
Doerflinger, E. Gravel, F. Ducongé, E. Doris, Chem.
Commun. 2015, 51, 14937.
[5] a) J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J.
Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli,
6
This article is protected by copyright. All rights reserved.