6
2
S. Ghosh et al. / Tetrahedron Letters 54 (2013) 58–62
entries 1 and 2 (Table 1), the dihydropyridines are obtained by
chromatographic separation over silica gel and the results of these
experiments are given in Table 1.
When the same reactions were performed under refluxing con-
ditions for 10 min, only ca. 5–10% of the corresponding dihydro-
pyridines were obtained; and the yield of the products increased
to 55–65% after 5 h. Thus, the present method, in comparison with
thermal ones, is encouragingly effectual and works smoothly both
for aromatic or aliphatic aldehydes free from any adhering byprod-
ucts or side reactions.
Cosconati, S.; Marinelli, L.; Lavecchia, A.; Novellino, E. J. Med. Chem. 2007, 50,
504–1513.
(a) Kidwai, M.; Saxena, S.; Mohan, R.; Venkataramanan, R. J. Chem. Soc., Perkin
Trans. 1 2002, 1845–1846; (b) Anniyappan, M.; Muralidharan, D.; Perumal, P. T.
Synth. Commun. 2002, 32, 659–663; (c) Ohberg, L.; Westman, J. Synlett 2001,
1
7
.
1
4
1
296–1298; (d) Lee, Y. A.; Chan, K. S. J. Ind. Eng. Chem. 2011, 17,
01–403; (e) Khadilkar, B. M.; Gaikar, V. G.; Chitnavis, A. A. Tetrahedron Lett.
995, 36, 8083–8086; (f) Eynde, J. J. V.; Mayence, A. Molecules 2003, 8, 381–
391; (g) Yadav, J. S.; Subba Reddy, B. V.; Reddy, P. T. Synth. Commun. 2001, 31,
25–430.
Mekheimer, R. A.; Hameed, A. A.; Sadek, K. U. Green Chem. 2008, 10,
92–593.
9. Shaabani, A.; Rezayan, A. H.; Rahmati, A.; Sharifi, M. Monatsh. Chem. 2006, 137,
7–81.
0. (a) Legeay, J.; Eyndeb, J. V.; Bazureau, J. P. Tetrahedron 2005, 61, 12386–12397;
b) Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. Green Chem. 2003, 5,
4
8
.
5
7
It is well-known that the formation of dihydropyridines by Han-
tzsch reaction under thermal conditions mechanistically involves
reactions of:
1
(
60–63; (c) Xia, J.; Wang, G. Synthesis 2005, 2379–2383; (d) Zonouz, A. M.;
Sahranavarde, N. E. J. Chem. 2010, 7, 372–376; (e) Tamaddon, F.; Razmi, Z.;
Jafari, A. A. Tetrahedron Lett. 2010, 51, 1187–1189; (f) Debache, A.; Ghalem, W.;
Boulcina, R.; Belfaitah, A.; Rhouati, Salah; Carboni, Bertrand. Tetrahedron Lett.
2009, 50, 5248–5250; (g) Evdokimov, N. M.; Magedov, I. V.; Kireev, A. S.;
Kornienko, A. Org. Lett. 2006, 8, 899–902.
a 1,5-dicarbonyl compound formed in situ from ethyl acetoace-
tate and aldehydes followed by reaction with ammonia,17
11. (a) Adharvana Chari, M.; Syamasundar, K. Catal. Commun. 2005, 6, 624–626; (b)
Gordeev, M. F.; Patel, D. V.; Gordon, E. M. J. Org. Chem. 1996, 61, 924–928.
an
a,b-unsaturated carbonyl compound and an enamino ester
derived from active methylene component, aldehydes, and
12. Love, B.; Goodman, M. M.; Snader, K. M.; Tedeschi, R.; Macko, E. J. Med. Chem.
1974, 17, 956–965.
1
8
ammonia,
a 1,5-dienamino-ammonium salt obtained from an imino ester
1
1
3. Hoffmann, N. Chem. Rev. 2008, 108, 1052–1103.
4. Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725–2756.
1
9
and enamine,
Aza-Diels–Alder reaction of an aza-diene and a dienophile.
15. (a) Ghosh, S. N.; Das, T. K.; Datta, D. B.; Mehta, S. Tetrahedron Lett. 1987, 28,
611–4614; (b) Ghosh, S. N.; Datta, I.; Chakraborty, R.; Das, T. K.; Sengupta, J.;
2
0
4
Sarkar, D. C. Tetrahedron 1989, 45, 1441–1447; (c) Ghosh, S. N.; Datta, D. B.;
Datta, I.; Das, T. K. Tetrahedron 1989, 45, 3775–3786; (d) Datta, I.; Das, T. K.;
Ghosh, S. N. Tetrahedron Lett. 1989, 30, 4009–4012; (e) Datta, I.; Das, T. K.;
Ghosh, S. N. Tetrahedron 1990, 46, 6821–6830; (f) Ghosh, S. N.; Nandi, B.;
Saima, Y. Tetrahedron Lett. 1996, 37, 3169–3170; (g) Ghosh, S. N.; Baul, S.
Arkivoc 2003, 58–68.
In the present instance, we speculate that the reaction may
plausibly be initiated by an electron transfer from ammonia in
the presence of light to the carbonyl group of ethyl acetoacetate
to produce a radical anion (I) that subsequently transforms into
an enamino-ester (II). Further combination of the anion-radical
I) and enamino-ester (II) gives rise to bis-enamino-diester (III)
which on reaction with aldehydes produces the intermediate
IV). The product (4) is then obtained from IV through the interme-
1
1
6. (a) Ghosh, S.; Das, J. Tetrahedron Lett. 2011, 52, 1112–1116; (b) Ghosh, S.; Das,
J.; Chattopadhyay, S. Tetrahedron Lett. 2011, 52, 2869–2872; (c) Das, J.; Ghosh,
S. Tetrahedron Lett. 2011, 52, 7189–7194; (d) Ghosh, S.; Das, J.; Saikh, F.
Tetrahedron Lett. 2012, 53, 5883–5886; (e) Ghosh, S.; Baul, S. Synth. Commun.
(
2001, 31, 2783–2786.
(
7. Gilchrist, T. L. Heterocyclic Chemistry; Pitman Publishing Ltd: London, 1985.
diacy of either V or VI as depicted in Scheme 2.
Chapter 8, p. 241.
In conclusion, we have developed a potentially efficient, abso-
lutely clean, and very high yielding eco-friendly methodology
18. Collie, J. N. Justus Liebigs Ann. Chem. 1884, 226, 294.
19. Eynde, J.-J. V.; D’Orazio, P.; Mayence, A.; Maquestiau, A. Tetrahedron 1992, 48,
2
4
1263–1268.
for the Hantzsch synthesis of 4-alkyl/aryl-1,4-dihydropyridines in
aqueous ethanol in one-pot three component condensation and
cyclization of various types of aliphatic and aromatic aldehydes
with ethyl acetoacetate and ammonium hydroxide solution devoid
of any unwarranted side reactions such as Norrish Type I cleavage
and may be considered as an excellent improvement over the
existing methods.
2
0. Lee, Y. A.; Kim, S. C. J. Ind. Eng. Chem. 2011, 17, 401–403.
21. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G. Text book of Practical Organic
Chemistry, 5th ed.; Singapore: Longman Singapore, 1994. p. 1168.
2
2. Leov, B.; Snader, K. M. J. Org. Chem. 1965, 30, 1914–1916.
3. Jacques, J.; Eynde, V.; Delfaese, F.; Mayence, A.; Haverbeke, Y. V. Tetrahedron
1995, 51, 651l–6516.
4. Method: Different aliphatic or aromatic aldehydes (1a–o) (10 mmol), ethyl
acetoacetate (20 mmol), and ammonium hydroxide solution (25%) were taken
in aqueous-ethanol mixture (20 mL, 1:1 proportion) and irradiated with a
2
2
1
1
50 W tungsten lamp (Philips India Ltd). The reaction time varied from 5–
5 min (monitored by TLC after 5 min. interval). Upon completion of the
Acknowledgments
reaction, the reaction mixture was cooled and the crystalline product (4a–o) so
obtained was filtered, washed with water and dried in vacuo. The Hantzsch
dihydropyridines were isolated in high yields in essentially pure form.
This research was supported by the Council of Scientific and
Industrial Research and University Grants Commission, Govern-
ment of India to the authors (F.S. & J.D) and partly by the Centre
for Advance Studies, and DST-PURSE program of the Department
of Chemistry, Jadavpur University.
3
,5-diethoxycarbonyl-4-(3,4-dimethoxy)phenyl-2,6-dimethyl-1,4-dihy-dropyridine
(
4f): White needle shaped crystal, Yield: 3.55 g (91%), mp: 147 °C, IR (KBr):
À1 1
m
max 3343, 2982, 1651, 1483, 1209, 770 cm
3
H NMR (300 MHz, CDCl , 22 °C):
1.23 (t, 7.1 Hz), 2.32 (s, 6H), 3.81 (s, 3H), 3.83 (s, 3H), 4.09 (m, 4H), 4.94 (s, 1H)
5
1
1
.69 (s, 1H), 6.71 (d, 8.2 Hz, 1H), 6.79 (dd, 8.2 Hz, 2.0 Hz, 1H), 6.87 (d,1.6 Hz,
H) ppm. 13C NMR (300 MHz, CDCl
, 22 °C): d 167.7, 148.1, 147.2, 143.7, 140.7,
19.8, 111.8, 110.8, 104.1, 59.7, 55.9, 55.7, 38.98, 19.4, 14.3 ppm.
,5-Diethoxycarbonyl-4-(3,4-methylenedioxy)phenyl-2,6-dimethyl-1,4-dihydropy-
3
3
Supplementary data
ridine (4g): Off white flakes, Yield: 3.47 g (93%), mp: 135 °C. IR (KBr): mmax 3307,
À1 1
2
6
7
1
902, 1652, 1486, 799 cm . H NMR (300 MHz, CDCl3, 22 °C): d 1.23 (t, 7.2 Hz,
H), 2.30 (s, 6H), 4.10 (s, 4H), 4.91 (s, 1H), 5.77 (s, 1H), 5.87 (s, 2H), 6.64 (d,
.9 Hz, 1H), 6.75 (m, 2H) ppm.13C NMR (75 MHz, CDCl
, 22 °C): d 167.6, 147.1,
45.7, 143.6, 142.0, 120.9, 108.5, 107.5, 104.2, 100.6, 59.7, 39.3, 19.5, 14.2 ppm.
3
3,5-Diethoxycarbonyl-4-(2-nitro)phenyl-2,6-dimethyl-1,4-dihydropyridine (4h):
Yellow needle shaped crystal, Yield: 2.25 g (60%), mp: 118 °C. IR (KBr):
m
max
À1
1
3331, 1695, 1489, 1212, 716 cm
3
. H NMR (300 MHz, CDCl , 22 °C): d 1.15 (t,
References and notes
7.1 Hz, 6H), 2.32 (s, 6H), 4.06 (m, 4H), 5.68 (s, 1H), 5.84 (s, 1H), 7.48 (m, 4H)
ppm.
1
2
3
4
.
.
.
.
Hantzsch, A. Justus Liebigs Ann. Chem. 1882, 215, 1–82.
David, J. T. Biochem. Pharmacol. 2007, 74, 1–9.
Boer, R.; Gekeler, V. Drugs Future 1995, 20, 499–509.
(a) Briukhanov, V. M. Exp. Clin. Pharmacol. 1994, 57, 47–49; (b) Bahekar, S.;
Shinde, D. Acta Pharm. (Zagreb) A 2002, 52, 281–287.
3,5-Diethoxycarbonyl-4-(4-formyl)phenyl-2,6-dimethyl-1,4-dihydropyri-dine
(4o):
Faint yellow needle shaped crystal, Yield: 210 mg. (59%), mp: 136–138 °C. 1H
1
NMR ( H NMR, CDCl3, 22 °C): d 9.93 (s, 1H), 7.74 (d, 8 Hz, 2H), 7.46, (d, 8 Hz,
2H), 5.95 (s, 1H), 5.06 (s, 1H), 4.08 (m, 4H), 2.34 (s, 6H), 1.20, (t, 7.1 Hz, 6H)
ppm. 13C NMR (75 MHz, CDCl3, 22 °C): d 192.2, 167.2, 154.8, 144.4, 134.6,
129.6, 128.8, 103.5, 59.9, 40.3, 19.6, 14.2 ppm. HRMS (ESI) m/z (%):
5
6
.
.
Gullapalli, S.; Ramarao, P. Neuropharmacology 2002, 42, 467–475.
(a) Bossert, F.; Mayer, H.; Wehinger, E. Angew. Chem., Int. Ed. Engl. 1981, 20,
+
7
62–769; (b) Gilpin, P. K.; Pachla, L. A. Anal. Chem. 1999, 71, 217–233; (c)
380.1473(M +Na).