TABLE 1. Reaction between 1 and 2a in Aqueous Media
Chemoselective Thioacetalization in
Water: 3-(1,3-Dithian-2-ylidene)pentane-
2
,4-dione as an Odorless, Efficient, and
Practical Thioacetalization Reagent
Dewen Dong,* Yan Ouyang, Haifeng Yu, Qun Liu,*
Jun Liu, Mang Wang, and Jing Zhu
1,
2a,
H2O,
mL
DBSA,
mmol
time,
h
yield,a
%
entry
mmol
mmol
Department of Chemistry, Northeast Normal University,
Changchun, 130024, P. R. China
1
2
3
4
5
6
2
2
2
2
2
2
2
2
2
2
2
2
12.0
6.0
4.0
3.0
3.0
3.0
1.0
1.0
1.0
1.0
1.6
3.0
8.0
4.3
3.0
2.2
0.9
0.8
98
98
98
97
98
95
Received February 10, 2005
a
Isolated yields for 3a.
flammable, harmful, and odorous reagents, which can
lead to serious environmental and safety problems.
Recently, we have developed a novel thioacetalization
procedure using nonthiolic, odorless 2-(2-chloro-1-(1-
chloroethenyl)-2-propenylidene)-1,3-dithiane, or 3-(1,3-
dithian-2-ylidene)pentane-2,4-dione as 1,3-propanedithiol
A chemoselective thioacetalization utilizing 3-(1,3-dithian-
2
1
-ylidene)pentane-2,4-dione as a novel nonthiolic, odorless
9
,3-propanedithiol equivalent catalyzed by p-dodecylbenze-
equivalents. It should be noted that this protocol involves
nesulfonic acid in water has been developed.
the use of methanol, a highly volatile and harmful
organic solvent. In our ongoing research program to
circumvent the above drawback in thioacetalization, we
found that p-dodecyl benzenesulfonic acid (DBSA), a
surfactant-type Bronsted acid, can be used as an acid
catalyst for the cleavage of ketene dithioacetals to form
odorless thio-containing intermediates. The results
prompted us to explore the feasibility of the thioacetal-
ization in aqueous media. In the present work, we
describe our preliminary results on a novel thioacetal-
ization in water using DBSA as the catalyst and 3-(1,3-
dithian-2-ylidene)pentane-2,4-dione 1 as a 1,3-propane-
dithiol equivalent.
The initial studies were performed on the reaction
between piperonal 2a and 1 with various feed ratios of
DBSA in water with stirring at reflux. To our delight,
all the reactions of 2a proceeded in water affording
dithioacetal 3a in excellent yields and some of the results
are summarized in Table 1. It was observed that the
Over the past decade, organic reactions in water
without the use of organic solvents have attracted a great
deal of attention since water is an easily available,
economical, and safe solvent, especially in relation to
1,2
recent environmental concerns. It has been demon-
strated that a variety of organic reactions, including
dehydration, can be realized in the presence of surfac-
tant-type Lewis or Bronsted acid catalysts in water.3
Recently, Kobayashi reported that thioacetalization can
be conducted in aqueous media with surfactant-type
4
Bronsted acid catalysts. Thioacetals have been widely
used as carbonyl protecting groups and intermediates in
the conversion of a carbonyl function to a hydrocarbon
derivative to form a C-C bond.5 Generally, thioacetals
are prepared by the condensation of carbonyl compounds
and low molecular weight thiols, such as 1,2-ethanedithi-
ol and 1,3-propanedithiol, in the presence of various types
of acidic catalysts.7 Unfortunately, these thiols are
,6
,8
(
5) (a) Kocienski, P. J. Protecting Groups; Thieme: Stuttgart,
Germany, 1994. (b) Greene, T. W.; Wuts, P. G. M. Protective Groups
in Organic Synthesis, 3rd ed.; John Wiley and Sons: New York, 2004.
(6) (a) Corey, E. J.; Seebach, D. J. Org. Chem. 1966, 31, 4097. (b)
Seebach, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 239. (c) Rych-
novsky, S. D. Chem. Rev. 1995, 95. (d) Smith, A. B., III; Condon, S.
M.; McCauley, J. A. Acc. Chem. Res. 1998, 31, 35. (e) Breit, B. Angew.
Chem., Int. Ed. 1998, 37, 7 (4), 453. (f) Smith, A. B., III; Pitram, S.
M.; Gaunt, M. J.; Kozmin, S. A. J. Am. Chem. Soc. 2002, 124, 14516.
(7) (a) Ku, B.; Oh, D. Y. Synth. Commun. 1989, 19, 433. (b) Page,
P. C. B.; Prodger, J. C.; Westwood, D. Tetrahedron 1993, 49, 10355.
(c) Kumar, P.; Reddy, R. S.; Singh, A. P.; Pandey, B. Synthesis 1993,
67. (d) Anand, R. V.; Saravanan, P.; Singh, V. K. Synlett 1999, 415.
(e) Tietze, L. F.; Weigand, B.; Wulff, C. Synthesis 2000, 69.
(8) (a) Garlaschelli, L.; Vidari, G. Tetrahedron Lett. 1990, 31, 5815.
(b) Patney, H. K. Tetrahedron Lett. 1991, 32, 2259. (c) Saraswathy, V.
G.; Sankararaman, S. J. Org. Chem. 1994, 59, 4665. (d) Firouzabadi,
H.; Iranpoor, N.; Hazarkhani, H. J. Org. Chem. 2001, 66, 7527. (e)
Kamal, A.; Chouhan, G. Tetrahedron Lett. 2002, 43, 1347. (f) Firouza-
badi, H.; Iranpoor, N.; Amani, K. Synthesis 2002, 59. (g) Kamal, A.;
Chouhan, G. Tetrahedron Lett. 2003, 44, 3337.
(9) (a) Liu, Q.; Che, G.; Yu, H.; Liu, Y.; Zhang, J.; Zhang, Q.; Dong,
D. J. Org. Chem. 2003, 68, 9148. (b) Yu, H.; Liu, Q.; Yin, Y.; Fang, Q.;
Zhang, J.; Dong, D. Synlett. 2004, 6, 999.
(
1) (a) Aqueous-Phase Organometallic Catalysis. Concepts and Ap-
plications; Cornils, B., Herrmann, W. A.; Eds.; Wiley-VCH: Weinheim,
Germany, 1998. (b) Organic Synthesis in Water; Grieco, P. A., Ed.:
Blackie Academic and Professional: London, UK, 1998. (c) Li, C.-J.;
Chan, T.-H. Organic Reactions in Aqueous Media; John Wiley &
Sons: New York, 1997. (d) Kobayashi, S.; Manabe, K. In Stimulating
Concepts in Chemistry; Shibasaki, M., Stoddart, J. F., Vogtle, F., Eds.;
Wiley-VCH: Weinheim, Germany, 2000.
(
2) (a) Breslow, R. Acc. Chem. Res. 1991, 24, 159. (b) Li, C.-J. Chem.
Rev. 1993, 93, 2023. (c) Genet, J. P.; Savignac, M. J. Organomet. Chem.
1
999, 576, 305. (d) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L.
Eur. J. Org. Chem. 2001, 439. (e) Kobayashi, S.; Manabe, K. Acc. Chem.
Res. 2002, 35, 209.
(
3) (a) Kobayashi, S.; Wakabayashi, T. Tetrahedron Lett. 1998, 39,
5
389. (b) Manabe, K.; Mori, Y.; Kobayashi, S. Synlett 1999, 1401. (c)
Manabe, K.; Kobayashi, S. Org. Lett. 1999, 1401. (d) Otto, S.; Engberts,
J. B. S. N.; Kwak, J. C. T. J. Am. Chem. Soc. 1998, 120, 9517. (e)
Rispens, T.; Engberts, J. B. S. N. Org. Lett. 2001, 3, 941. (f) Manabe,
K.; Sun, X.-M.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 10101.
(
4) (a) Manabe, K.; Limura, S.; Sun, X.-M.; Kobayashi, S. J. Am.
Chem. Soc. 2002, 124, 11978. (b) Limura, S.; Manabe, K.; Kobayashi,
S. Org. Lett. 2003, 5 (2), 101.
1
0.1021/jo050271y CCC: $30.25 © 2005 American Chemical Society
Published on Web 04/19/2005
J. Org. Chem. 2005, 70, 4535-4537
4535