714
M. Edin et al. / Tetrahedron: Asymmetry 17 (2006) 708–715
1
9
2
70.5, 75.1, 73.5, 30.4, 27.3, 23.8, 22.4, 20.9, 20.8, 13.8,
.6; minor isomer: d 170.7, 75.5, 73.9, 29.0, 27.6, 22.4,
1.0, 20.9, 13.9, 9.9 (two carbons are missing due to
Acknowledgments
Financial support from the Swedish Research Council,
the Swedish Foundation for Strategic Research and
the Ministereo de Educati o´ n y Ciencia of Spain is grate-
fully acknowledged.
overlapping with the major isomer).
3
0
4
.6. Characterization of products
References refer to previously reported spectral data of
known compounds.
References
syn/anti-1,2-Diacetoxy-1-phenylpropane 4a:31 1H NMR:
1
. Kolb, H. C.; VanNieuwenhenhze, M. S.; Sharpless, K. B.
9
5%, syn/anti ꢁ 2:1; chiral GC (80 ꢁC cte. for 30
Chem. Rev. 1994, 94, 2483–2547.
min then 2 ꢁC/min to 160 ꢁC): t (major) = 56.5 min,
2. (a) Jonsson, S. Y.; Adolfsson, H.; B a¨ ckvall, J.-E. Chem.
Eur. J. 2003, 9, 2783–2788; (b) Jonsson, S. Y.; F a¨ rne-
g a˚ rdh, K.; B a¨ ckvall, J.-E. J. Am. Chem. Soc. 2001, 123,
syn
t
(minor) = 56.3 min, tanti(major) = 55.0 min, tanti(mi-
syn
nor) = 55.2 min. The absolute configuration of the pure
syn diacetate 4a was established to be (R,R) from its spe-
cific rotation (negative rotation in chloroform). This is
in accordance with Kazlauskas’ rule.
1
365–1371; (c) Bergstad, K.; Jonsson, S. Y.; B a¨ ckvall,
3
2
J.-E. J. Am. Chem. Soc. 1999, 121, 10424–10425.
. (a) D o¨ bler, C.; Mehltretter, G. M.; Sundermeier, U.;
Beller, M. J. Am. Chem. Soc. 2000, 122, 10289–10297; (b)
D o¨ bler, C.; Mehltretter, G. M.; Beller, M. Angew. Chem.,
Int. Ed. 1999, 38, 3026–3028.
4. Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in
Organic Synthesis. Regio- and Stereoselective Biotransfor-
mations; Wiley-VCH: Weinheim, 1999; pp 131–151.
3
syn/anti-2,3-Diacetoxyoctane 4b:33 chiral GC (120 ꢁC
cte. for 15 min): 95% yield, syn/anti = 2:1, tsyn(major) =
8
.5 min, tsyn(minor) = 8.3 min, tanti(major) = 7.6 min,
tanti(minor) = 7.8 min.
5
6
. Ref. 4, pp 156–167.
. Ref. 4, p 35 and references therein.
syn/anti-1,2-Diacetoxy-1-(4-methoxy-phenyl)-propane
3
4 1
7. Kim, M.-J.; Choi, G.-B.; Kim, J.-Y.; Kim, H.-J. Tetrahe-
dron Lett. 1995, 36, 6253–6256.
8
4
e: H NMR: 77% yield, syn/anti = 2:1; chiral HPLC
(
Chiralpak AS, iso-hexane/2-propanol 96:4, flow rate
. Lee, A.-L.; Ley, S. V. Org. Biomol. Chem. 2003, 1, 3957–
966.
0
3
.5 mL/min): tsyn(major) = 18.1 min, tsyn(minor) =
0.3 min, tanti(major + minor) = 16.5 min; chiral HPLC
3
9
. Symmetrical diols: (a) Persson, B. A.; Huerta, F. F.;
B a¨ ckvall, J.-E. J. Org. Chem. 1999, 64, 5237–5240;
Unsymmetrical 1,3-diols: (b) Edin, M.; Steinreiber, J.;
B a¨ ckvall, J.-E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
(
Chiralcel OD-H, iso-hexane/2-propanol 99.5:0.5, flow
rate 0.5 mL/min): tanti(major) = 28.6 min, tanti(minor) =
3
1.9 min, tsyn(major) = 34.3 min, tsyn(minor) = 36.0 min.
5
761–5766; Unsymmetrical 1,4-diols: (c) Mart ´ı n-Matute,
B.; B a¨ ckvall, J.-E. J. Org. Chem. 2004, 69, 9191–9195.
0. Bisht, K. S.; Kumar, A.; Kumar, N.; Parmar, V. S. Pure
Appl. Chem. 1996, 68, 749–752.
1. Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in
Organic Synthesis; Wiley-VCH: Weinheim, 1999; pp 163–
cis/trans-1,2-Diacetoxy-1,2,3,4-tetrahydro-naphthalene
3
5
1
1
1
4
f:
H NMR: 26% yield, syn/anti = 7:5; chiral GC
(
80 ꢁC cte. for 30 min then 1.5 ꢁC/min to 170 ꢁC):
t
syn
(major) = 78.9 min, t (minor) = 79.5 min, t (major)
syn
anti
1
=
78.7 min, tanti(minor) = 78.3 min. H NMR (300 MHz,
1
64.
CDCl ) syn/anti-mixture: d 6.94–7.32 (m, 4H), 6.18 (d,
3
1
2. After 2 h <5% migration was observed. After prolonged
time a mixture of monoacetates, diol, and diacetate was
formed.
13. Csjernyik, G.; Bog a´ rt, K.; B a¨ ckvall, J. E. Tetrahedron
Lett. 2004, 45, 6799–6802.
J = 3.6 Hz, 0.58H), 6.07 (d, J = 5.9 Hz, 0.42H), 5.15–
5
2
.29 (m, 1H), 2.82–3.12 (m, 2H), 1.92–2.35 (m, 6H),
.11 (s, 1.26H), 2.10 (s, 1.74H), 2.05 (s, 1.74H), 2.04
1
3
(
s, 1.26H); C NMR (75 MHz, CDCl ) syn/anti-mix-
3
ture: d 170.5, 170.4, 170.3, 136.6, 136.6, 132.7, 132.1,
14. (a) Mart ´ı n-Matute, B.; Edin, M.; Bog a´ r, K.; B a¨ ckvall,
J.-E. Angew. Chem., Int. Ed. 2004, 43, 6535–6539; (b)
Mart ´ı n-Matute, B.; Edin, M.; Bog a´ r, K.; Kaynak, F. B.;
B a¨ ckvall, J.-E. J. Am. Chem. Soc. 2005, 127, 8817–
1
7
2
30.0, 129.0, 128.7, 128.7, 128.5, 128.2, 126.5, 126.4,
1.4, 71.0, 70.1, 69.3, 27.1, 25.7, 24.9, 23.3, 21.1, 21.1,
1.0 (two carbons are missing due to overlapping).
8
825.
1
1
5. Ref. 14b and unpublished results from this laboratory.
6. Samples were withdrawn and analyzed by H NMR up to
syn/anti-1,2-Diacetoxy-1-(4-bromo-phenyl)-propane 4g:
H NMR: 61% yield, syn/anti = 2:1; chiral HPLC (Chi-
ralcel OD-H, iso-hexane/2-propanol 98:2, flow rate
1
1
2
8 h.
1
7. A rough estimation of the energy in syn- versus anti-diol
monoacetates approximated to 1,2-substituted cyclopen-
tanes made in Chem3D gave a difference of 2 kcal/mol.
0
1
.5 mL/min): tsyn(major) = 15.5 min, tsy n1 (minor) =
9.1 min, tanti(major + minor) = 13.6 min. H NMR
(
300 MHz, CDCl ) syn/anti-mixture: d 7.18–7.26 (m,
18. DSM in the Netherlands has recently developed a large
scale industrial process for dynamic kinetic resolution
3
2
5
1
1
6
H), 7.46–7.53 (m, 2H), 5.83 (d, J = 4.4 Hz, 0.35H),
.70 (d, J = 7.1 Hz, 0.65H), 5.14–5.27 (m, 1H), 2.13 (s,
.05H), 2.08 (s, 1.95H), 2.02 (s, 1.95H), 2.00 (s,
.05H), 1.17 (d, J = 6.6 Hz, 1.05H), 1.09 (d, J =
(
DKR) of secondary alcohols based on a ruthenium
catalyst and CALB: Verzijl, G. K. M.; De Vries J. G.;
Broxterman, Q. B. WO 0190396 A1 20011129.
9. VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron
Lett. 1976, 17, 1973–1976.
0. Closson, A.; Johansson, M.; B a¨ ckvall, J.-E. Chem. Com-
mun. 2004, 1494–1495.
1
2
1
3
.6 Hz, 1.95H); C NMR (75 MHz, CDCl ) major
3
isomer (syn): d 170.1, 169.8, 135.9, 131.7, 129.0, 122.6,
7
1
1
6.6, 71.0, 21.0, 20.9, 16.4; minor isomer (anti) d: 170.1,
69.7, 135.6, 131.5, 128.7, 122.2, 75.5, 71.2, 21.0, 21.0,
4.8.
21. Moussou, P.; Archelas, A.; Furstoss, R. Tetrahedron 1998,
54, 1563–1572.