SCHEME 1
Cop p er -Med ia ted , P a lla d iu m -Ca ta lyzed
Cou p lin g of Th iol Ester s w ith Alip h a tic
Or ga n obor on Rea gen ts
Ying Yu and Lanny S. Liebeskind*
Emory University, Department of Chemistry,
1515 Dickey Drive, Atlanta, Georgia 30322
are understood to depend on the ability of the copper(I)
carboxylate to activate the catalytic intermediate, R1-
COPdL2SR′, toward transmetalation by both boronic
acids and organotri-n-butylstannanes. In the case of the
boronic acid cross-couplings, the data support a dual
activation of both the palladium thiolate and the boronic
acid by the copper(I) carboxylate as implied in Figure
1.1a,b
chemll1@emory.edu
Received J anuary 5, 2004
Abstr a ct: Thiol esters and B-alkyl-9-BBN derivatives
couple in the presence of a copper(I) carboxylate mediator
and a palladium catalyst. In contrast to copper-mediated,
palladium-catalyzed cross-couplings of thioorganics with
boronic acids, the current coupling reaction of 9-BBN deriva-
tives is facilitated by the addition of a base such as Cs2CO3.
Under optimized conditions, a variety of thiol esters react
with different B-alkyl-9-BBN derivatives giving ketones in
moderate to excellent yields.
To date, copper-mediated, palladium-catalyzed cou-
plings of thioorganics have been successfully developed
for aromatic, heteroaromatic, and alkenylboronic acids
as well as for the analogous organotri-n-butylstannanes.
Noticeably missing from this new coupling procedure are
examples utilizing either aliphatic boron or tin reagents.
In fact, alkylboronic acids have been problematic in
traditional Suzuki cross-couplings and generally result
in low yields of coupling products. Recent studies, how-
ever, show promise of improving this situation.6 In
contrast to aliphatic boronic acids, B-alkyl 9-BBN re-
agents, readily prepared by hydroboration of alkenes,7
can be cross-coupled with various organic halides under
mild conditions.8 In these standard Suzuki-Miyaura
couplings, both a base and palladium catalyst are es-
sential for a successful reaction.9 Other efficient alkyl-
boron cross-coupling partners have also been reported,
such as borinate esters (generated from selective mo-
nooxidation of B-alkyl-9-BBN reagents with anhydrous
trimethylamine N-oxide),10,11 trialkylboranes,12 and po-
tassium alkyltrifluoroborates.13
Recent publications have demonstrated the efficient,
palladium-catalyzed, copper-mediated coupling of various
thioorganics (thiol esters, alkynyl thioethers, heteroaro-
matic thioethers) with both boronic acids1 and with
organotri-n-butylstannanes.2 As a case in point, thiol
esters react with boronic acids in a mild, efficient, and
general Pd-catalyzed, Cu(I) carboxylate-mediated cou-
pling to give ketones under nonbasic conditions (Scheme
1).1a,3 In contrast, the synthesis of ketones via noncar-
bonylative cross-coupling protocols typically requires acyl
moieties of greater reactivity than thiol esters (and thus
lower functional group compatibility), such as acid ha-
lides4 and anhydrides.5 These new thioorganic couplings
The thiol ester/boronic acid method of ketone synthesis
depicted in Scheme 1 is effective with various substitu-
ents on the thiol ester (aromatic, heteroaromatic, ali-
phatic) and with aromatic, heteroaromatic, and alkenyl-
boronic acids. Unfortunately, under standard conditions
for the Cu(I) carboxylate-mediated, palladium-catalyzed
coupling of thiol esters with boronic acids,1 the coupling
* To whom correspondence should be addressed. Tel: (404) 727-
6604. Fax: (404) 727-0845.
(1) (a) Srogl, J .; Liebeskind, L. S. J . Am. Chem. Soc. 2000, 122,
11260. (b) Liebeskind, L. S.; Srogl, J . Org. Lett. 2002, 4, 979; Savarin,
C.; Srogl, J .; Liebeskind, L. S. Org. Lett. 2001, 3 (1), 91; Savarin, C.;
Liebeskind, L. S. Org. Lett. 2001, 3 (14), 2149. Srogl, J .; Liebeskind,
L. S. Org. Lett. 2002, 4 (6), 979. Kusturin, C. L.; Liebeskind, L. S.;
Neumann, W. L. Org. Lett. 2002, 4 (6), 983. Liebeskind, L. S.; Srogl,
J .; Savarin, C.; Polanco, C. Pure Appl. Chem. 2002, 74 (1), 115.
Kusturin, C.; Liebeskind, L. S.; Rahman, H.; Sample, K.; Schweizer,
B.; Srogl, J .; Neumann, W. L. Org. Lett. 2003, 5 (23), 4349.
(2) Egi, M.; Wittenberg, R.; Srogl, J .; Liebeskind, L. S. Org. Lett.
2003, 5, 3033-3035. Egi, M.; Liebeskind, L. S. Org. Lett. 2003, 5, 801.
Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet,
G. Org. Lett. 2003, 5, 803.
(3) By way of comparison, thiol esters are known to give ketones
upon reaction with Grignard reagents (Araki, M.; Sakata, S.; Takei,
H.; Mukaiyama, T. Bull. Chem. Soc. J pn. 1974, 47, 1777), organocopper
compounds ((a) Anderson, R. J .; Henrick, C. A.; Rosenblum, L. D. J .
Am. Chem. Soc. 1974, 96, 3654. (b) Kim, S.; Lee, J . I. J . Chem. Soc.,
Chem. Commun. 1981, 1231), 1-alkynyltrimethysilanes (Kawanami,
Y.; Katsuki, I.; Yamaguchi, M. Tetrahedron Lett. 1983, 24, 5131), and
organozinc reagents (Tokuyama, H.; Yokoshima, S.; Yamashita, T.;
Fukuyama, T. Tetrahedron Lett. 1998, 39, 3189). Heteroaromatic
thioethers participate in a palladium-catalyzed coupling with orga-
nozinc reagents (Angiolelli, M. E.; Casalnuovo, A. L.; Selby, T. P.
Synlett. 2000, 905-907).
(6) (a) Littke, A. F.; Dai, C.; Fu, G. C. J . Am. Chem. Soc. 2000, 122,
4020. (b) Zou, G.; Reddy, Y. K.; Falck, J . R. Tetrahedron Lett. 2001,
42, 7213. (c) Kirchhoff, J . H.; Netherton, M. R.; Hills, I. D.; Fu, G. C.
J . Am. Chem. Soc. 2002, 124, 13662. (d) Molander, G. A.; Yun, C.
Tetrahedron 2002, 58, 1465.
(7) Soderquist, J . A. In Encyclopedia of Reagents for Organic
Synthesis; Paquette, L. A., Ed.; J ohn Wiley & Sons: New York, 1995;
Vol. 1, pp 622-630.
(8) Uemura, M.; Nishimura, H.; Minami, T.; Hayashi, T. J . Am.
Chem. Soc. 1991, 113, 5402. Rivera, I.; Colberg, J . C.; Soderquist, J .
A. Tetrahedron Lett. 1992, 33, 6919. Bhagwat, S. S.; Gude, C.; Cohen,
D. S.; Dotson, R.; Mathis, J .; Lee, W.; Furness, P. J . Med. Chem. 1993,
36, 205. Netherton, M. R.; Dai, C.; Neuschuetz, K.; Fu, G. C. J . Am.
Chem. Soc. 2001, 123, 10099.
(9) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(10) Matos, K.; Soderquist, J . A. J . Org. Chem. 1998, 63, 461.
(11) (a) Moore, W. R.; Schatzman, G. L.; J arvi, E. T.; Gross, R. S.;
McCarthy, J . R. J . Am. Chem. Soc. 1992, 114, 360. (b) Matos, K.;
Soderquist, J . A. J . Org. Chem. 1998, 63, 461.
(4) Haddach, M.; McCarthy, J . R. Tetrahedron Lett. 1999, 40, 3109.
Bumagin, N. A.; Korolev, D. N. Tetrahedron Lett. 1999, 40, 3057.
(5) Kakino, R.; Yasumi, S.; Shimizu, I.; Yamamoto, A. Bull. Chem.
Soc., J pn. 2002, 75, 137-148. Goossen, L. J .; Ghosh, K. Angew. Chem.,
Int. Ed. 2001, 40, 3458-3460.
(12) (a) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh,
M.; Suzuki, A. J . Am. Chem. Soc. 1989, 111, 314. (b) Old, D. W.; Wolfe,
J . P.; Buchwald, S. L. J . Am. Chem. Soc. 1998, 120, 9722.
(13) Molander, G. A.; Ito, T. Org. Lett. 2001, 3, 393.
10.1021/jo049964p CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/17/2004
3554
J . Org. Chem. 2004, 69, 3554-3557