J . Org. Chem. 1997, 62, 2665-2668
2665
En a n tioselective Ad d ition of Dieth ylzin c to
Ald eh yd es Ca ta lyzed by a Tita n a te
Com p lex w ith a Ch ir a l Tetr a d en ta te
Liga n d
J un Qiu, Cheng Guo, and Xumu Zhang*
Department of Chemistry, The Pennsylvania State
University, University Park, Pennsylvania 16802
Received J anuary 9, 1997
The addition of dialkylzincs to aldehydes is one of the
most widely studied carbon-carbon bond-forming reac-
tions. Many systems reported to date use amino alcohols
as ligands and zinc complexes as catalysts.1 The asym-
metric version of this alkylation reaction can also be
catalyzed by chiral titanate complexes2-4 (e.g., TAD-
DOLs2 and chiral sulfonamides3). We have recently
studied a titanate complex with tetradentate helical
ligand 1 ((1R,2R)-(+)-1,2-bis(3,5-dichloro-2-hydroxyben-
zenesulfonamido)cyclohexane) for the asymmetric addi-
tion of diethylzinc to aldehydes (Figure 1).5 Herein we
report the scope of this enantioselective reaction with
various substrates. This alkylation approach provides
a useful route for the synthesis of some chiral secondary
alcohols, especially allylic alcohols,6 and this work con-
tributes to an understanding of the details of this type
of reaction.
F igu r e 1.
F igu r e 2.
Resu lts a n d Discu ssion
Using phenolic aromatic sulfonamide 1 as the key cleft-
defining group can potentially provide an excellent steric
(1) For recent reviews: (a) Noyori, R.; Kitamura, M. Angew. Chem.,
Int. Ed. Engl. 1991, 30, 49. (b) Soai, K.; Seiji, S. Chem. Rev. 1992, 92,
833.
(2) For TADDOLs as ligands: (a) Schmidt, B.; Seebach, D. Angew.
Chem., Int. Ed. Engl. 1991, 30, 99. (b) Seebach, D.; Behrendt, L.; Felix,
D. Angew. Chem., Int. Ed. Engl. 1991, 30, 1008. (c) Schmidt, B.;
Seebach, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 1321. (d) von dem
Bussche-Hunnefeld, J . L.; Seebach, D. Tetrahedron 1992, 48, 5719.
(e) Seebach, D.; Plattner, D. A.; Beck, A. K.; Wang, Y. M.; Hunziker,
D.; Petter, W. Helv. Chim. Acta 1992, 75, 2171. (f) Seebach, D.; Beck,
A. K.; Schimdt, B.; Wang, Y. M. Tetrahedron 1994, 50, 2171. (g) Weber,
B.; Seebach, D. Tetrahedron 1994, 50, 7473. (h) Ito, Y. N.; Ariza, X.;
Beck, A. K.; Boha´c, A.; Granter, C.; Gawley, R. E.; Ku¨hnle, F. N. M.;
Tuleja, J .; Wang, Y. M.; Seebach, D. Helv. Chim. Acta 1994, 77, 2071.
(3) For disulfonamides as ligands: (a) Takahashi, H.; Kawakita, T.;
Yoshioka, M.; Kobayashi, S.; Ohno, M. Tetrahedron Lett. 1989, 30,
7095. (b) Yoshioka, M.; Kawakita, T.; Ohno, M. Tetrahedron Lett. 1989,
30, 1657. (c) Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M.;
Kobayashi. S. Tetrahedron 1992, 48, 5691.
(4) For more disulfonamides and related ligands: (a) Rozema, M.
J .; AchyuthaRao, S.; Knochel, P. J . Org. Chem. 1992, 57, 1956. (b)
Brieden, W.; Ostwald, R.; Knochel, P. Angew. Chem., Int. Ed. Engl.
1993, 32, 582. (c) Rozema, M. J .; Eisenberg, C.; Lutjens, H.; Ostwald,
R.; Belyk, K.; Knochel, P. Tetrahedron Lett. 1993, 34, 3115. (d)
Nowotny, S.; Vettel, S.; Knochel, P. Tetrahedron Lett. 1994, 35, 4539.
(e) Schwink, L.; Knochel, P. Tetrahedron Lett. 1994, 35, 9007. (f)
Lutjens, H.; Knochel, P. Tetrahedron: Asymmetry 1994, 5, 1161. (g)
Ostwald, R.; Chavant, P.-Y.; Stadtmuller, H.; Knochel, P. J . Org. Chem.
1994, 59, 4143. (h) Lutjens, H.; Nowotny, S.; Knochel, P. Tetrahe-
dron: Asymmetry 1995, 6, 2675. (i) Berninger, J .; Koert, U.; Eisenberg-
Ho¨hl, C.; Knochel, P. Chem. Ber. 1995, 128, 1021. (j) Vettel, S.; Lutz,
C.; Knochel, P. Synlett 1996, 731. (k) Langer, F.; Schwink, L.;
Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. J . Org. Chem. 1996,
61, 8229. (l) Ito, K.; Kimura, Y.; Okamura, H.; Katsuki, T. Synlett 1992,
573. (m) Soai, K.; Hirose, Y.; Ohno, Y. Tetrahedron: Asymmetry 1993,
4, 1473. (n) Dreisbach, C.; Kragl, U.; Wandrey, C. Synthesis 1994, 911.
(o) Waldman, H.; Weigerding, M.; Dreisbach, C.; Wandrey, C. Helv.
Chim. Acta 1994, 77, 2111.
F igu r e 3.
environment to influence the orientation of substrates.
Table 1 summarizes the experimental results of asym-
metric addition of diethylzinc to various aldehydes. In
general, highly enantioselective additions have been
realized.
There have been several different mechanisms pro-
posed for the addition of diethylzinc to aldehydes. We
have examined the nature of the titanate complex 2 in
the catalytic addition of diethylzinc to aldehydes by NMR
spectroscopy and nonlinear asymmetric induction effect.5
The experimental data suggested that the catalyst con-
taining ligand 1 is a monomeric titanate species during
the asymmetric bond forming process. On the basis of
our investigation and related mechanistic studies by
Seebach,2 Yoshioka,3 and Knochel,4a-k a plausible key
intermediate is the bimetallic complex 3, which has the
dialkylzinc coordinated to the two phenoxide groups prior
to the transfer of the ethyl group to the carbonyl (Figure
2). The excess Ti(OPri)4 removes the zinc alkoxide from
the titanium center.2 The removal of zinc alkoxide has
to be efficient or the catalytic cycle will not continue. This
alkylation reaction is a typical ligand-accelerated cata-
lytic process,7 in which the titanate complex 2 is a better
catalyst than Ti(OPri)4 alone.
(5) (a) Zhang, X.; Guo C. Tetrahedron Lett. 1995, 36, 4947. (b) Guo,
C.; Qiu, J .; Zhang, X.; Verdugo, D.; Larter, M. L.; Christie, R.; Kenney,
P.; Walsh, P. L. Tetrahedron, in press.
(6) Other synthetic methods of chiral allylic alcohols: (a) Martin,
V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, Y.; Sharpless,
K. B. J . Am. Chem. Soc. 1981, 103, 6237. (b) Kitamura, M.; Kasahara,
I.; Manabe, K.; Noyori, R.; Takaya, H. J . Org. Chem. 1988, 53, 708.
(7) Berrisford, D. J .; Bolm, C.; Sharpless, K. B. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1059.
S0022-3263(97)00055-8 CCC: $14.00 © 1997 American Chemical Society