Organometallics
Article
Table 3. Latent ROMP of Norbornene-Derived Monomers
with Catalyst 10
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and X-ray crystallographic data (CIF
files). This material is available free of charge via the Internet at
b
temp
(°C)
time
(h)
conv.
(%)
yield
c
a
d
d
entry
monomer
(%)
Mn
PDI
1
2
3
4
5
6
7
8
5
5
6
6
7
7
8
8
25
85
25
85
25
85
25
85
24
2
0
99
0
81
94
48
68
24 300 1.16
36 900 1.27
2 000 3.25
3 800 1.79
AUTHOR INFORMATION
37
2
■
95
0
Corresponding Author
24
2
99
0
37
2
ACKNOWLEDGMENTS
■
78
This research was supported by the National Science
Foundation through a Graduate Fellowship to R.M.T. and by
the Department of Defense through a Graduate Fellowship to
B.K.K. A.F. thanks the Swiss National Science Foundation for a
postdoctoral fellowship. We thank Dr. Rosemary Conrad for
the synthesis of monomer 6. We thank the NSF and NIH for
providing funding and Materia for gifts of catalyst precursors.
a
The loading of catalyst 10 was 2 mol %. The substrate concentrations
were 0.5 M in THF, and the reactions were carried out sealed under a
b
1
nitrogen atmosphere. The conversion was determined by H NMR
c
d
spectroscopy. Isolated polymer yield. The molecular weight and PDI
were determined by GPC.
The solvent also plays a role in the degree of latency of the
catalysts, as THF proved to result in significantly improved
latency at 25 °C for ROMP in comparison to benzene.
Specifically, complex 10 showed excellent latency toward the
ROMP of COD in THF at 25 °C, giving no polymerization
product after 18 h. However, repeating the same reaction with
complex 10 using benzene as the solvent yields 28% conversion
of COD to polymer after 30 min at 25 °C. THF may increase
the latency of the catalysts by functioning as a coordinating
solvent, thereby potentially slowing olefin association with
ruthenium.
The results of latent ROMP of monomers 5−8 with catalyst
10 are presented in Table 3. Catalyst 10 was latent for the
ROMP of all monomers screened, affording no reaction at
25 °C up to 37 h. Excellent conversion was achieved in 2 h at
85 °C for each of the monomers (Table 3, entries 2, 4, 6, and
8), and the corresponding polymers were isolated in good
yield. The polydispersity index (PDI) was moderately low for
the polymerization of 5 and 6 (Table 3, entries 2 and 4),
indicating good catalyst initiation and propagation. The PDI
for the polymerization of 7 was significantly broader and for 8
was moderately broader (Table 3, entries 6 and 8,
respectively), suggesting poorer catalyst initiation for these
monomers.
REFERENCES
■
(1) (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18−29.
(b) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243−251.
(c) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am.
Chem. Soc. 2000, 122, 3783−3784. (d) Fu, G. C.; Nguyen, S. T.;
Grubbs, R. H. J. Am. Chem. Soc. 1993, 115, 9856−9857.
(2) Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H.
Organometallics 2006, 25, 5740−5745.
(3) Kuhn, K. M.; Bourg, J. B.; Chung, C. K.; Virgil, S. C.; Grubbs, R.
H. J. Am. Chem. Soc. 2009, 131, 5313−5320.
(4) (a) Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 8525−
8527. (b) Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H.
J. Am. Chem. Soc. 2003, 125, 11360−11370.
(5) Monsaert, S.; Lozano Vila, A.; Drozdzak, R.; Van Der Voort, P.;
Verpoort, F. Chem. Soc. Rev. 2009, 38, 3360−3372.
(6) Szadkowska, A.; Grela, K. Curr. Org. Chem. 2008, 12, 1631−
1647.
(7) Hejl, A.; Day, M. W.; Grubbs, R. H. Organometallics 2006, 25,
6149−6154.
(8) Ung, T.; Hejl, A.; Grubbs, R. H. Organometallics 2004, 23, 5399−
5401.
(9) Samec, J. S.; Keitz, B. K.; Grubbs, R. H. J. Organomet. Chem.
2010, 695, 1831−1837.
(10) Wang, D.; Wurst, K.; Knolle, W.; Decker, U.; Prager, L.;
Naumov, S.; Buchmeiser, M. R. Angew. Chem., Int. Ed. 2008, 47,
3267−3270.
(11) Ginzburg, Y.; Anaby, A.; Vidavsky, Y.; Diesendruck, C. E.; Ben-
Asuly, A.; Goldberg, I.; Lemcoff, N. G. Organometallics 2011, 30,
3430−3437.
CONCLUSIONS
■
We have developed N-aryl, N-alkyl NHC ruthenium catalysts
showing excellent latent behavior toward cross-metathesis and
ROMP reactions, providing fine thermal control for initiation.
These complexes demonstrate remarkable thermal stability over
extended periods of time, enabling metathesis reactions to be
successfully carried out at high temperatures. Exchanging out
the chloride ligands for iodide ligands is important for
producing complexes that are latent for ROMP. Catalyst
studies showed that elevated temperatures are required for
metathesis activity, and upon reacting at these temperatures,
the catalysts afford good conversion of substrate to product.
These N-aryl, N-tert-butyl ruthenium complexes are attractive
for applications in latent chemistry due to their properties
and behavior, and their thermal stability lends them to be
promising metathesis catalysts where elevated temperatures are
required.
(12) Wang, D.; Wurst, K.; Buchmeiser, M. R. Chem. Eur. J. 2010, 16,
12928−12934.
(13) Kost, T.; Sigalov, M.; Goldberg, I.; Ben-Asuly, A.; Lemcoff, N.
G. J. Organomet. Chem. 2008, 693, 2200−2203.
(14) (a) Monsaert, S.; Ledoux, N.; Drozdzak, R.; Verpoort, F.
J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 302−310. (b) Zirngast, M.;
Pump, E.; Leitgeb, A.; Albering, J. H.; Slugovc, C. Chem. Commun.
2011, 47, 2261−2263.
(15) Lexer, C.; Burtscher, D.; Perner, B.; Tzur, E.; Lemcoff, G. N.;
Slugovc, C. J. Organomet. Chem. 2011, 696, 2466−2470.
(16) Hudson, D. M.; Valerte, E. J.; Schachner, J.; Limbach, M.;
Muller, K.; Schanz, H. J. ChemCatChem 2011, 3, 297−301.
̈
(17) Diesendruck, C. E.; Vidavsky, Y.; Ben-Asuly, A.; Lemcoff, N. G.
J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4209−4213.
(18) Ben-Asuly, A.; Tzur, E.; Diesendruck, C. E.; Sigalov, M.;
Goldberg, I.; Lemcoff, N. G. Organometallics 2008, 27, 811−813.
(19) Kabro, A.; Roisnel, T.; Fischmeister, C.; Bruneau, C. Chem. Eur.
J. 2010, 16, 12255−12261.
6716
dx.doi.org/10.1021/om200911e|Organometallics 2011, 30, 6713−6717