ORGANIC
LETTERS
2012
Vol. 14, No. 9
2410–2413
Palladium-Catalyzed Synthesis of
4-Oxaspiro[2.4]heptanes via Central
Attack of Oxygen Nucleophiles to
π-Allylpalladium Intermediates
Ryo Shintani,*,† Tomoaki Ito,† and Tamio Hayashi*,†,‡
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto
606-8502, Japan, and Institute of Materials Research and Engineering, A*STAR, 3
Research Link, Singapore 117602
shintani@kuchem.kyoto-u.ac.jp; tamioh@imre.a-star.edu.sg
Received April 3, 2012
ABSTRACT
A palladium-catalyzed decarboxylative cyclopropanation of γ-methylidene-δ-valerolactones with aromatic aldehydes has been developed to give
4-oxaspiro[2.4]heptanes with high selectivity. The site of nucleophilic attack to a π-allylpalladium intermediate has been controlled with a
sterically demanding phosphine ligand. The course of the reaction is highly dependent on ligands and solvents, and selective formation of
methylenetetrahydropyrans has also been realized.
Palladium-catalyzed cyclopropanation through a nu-
cleophilicattackatthecentralcarbon of aπ-allylpalladium
intermediate represents an interesting way of constructing
cyclopropanes, although it requires suppression of the
competitive allylic substitution process that is usually more
prone to take place.1 Since the first discovery of such a
cyclopropanation by Hegedus and co-workers in stoichio-
metric reactions with ester enolates,2 several effective
catalytic variants have been developed, most of which rely
on the use of enolate-based carbon nucleophiles.3,4 Other
nucleophiles that can be employed for this type of cyclo-
propanation are currently limited to carbonyl-attached
nitrogen nucleophiles in the ring-forming processes.5 In
this context, here we describe the development of a palla-
dium-catalyzed synthesis of 4-oxaspiro[2.4]heptanes from
(3) (a) Formica, M.; Musco, A.; Pontellini, R.; Linn, K.; Mealli, C.
J. Organomet. Chem. 1993, 448, C6. (b) Satake, A.; Nakata, T. J. Am.
Chem. Soc. 1998, 120, 10391. (c) Satake, A.; Koshino, H.; Nakata, T.
Chem. Lett. 1999, 28, 49. (d) Satake, A.; Kadohama, H.; Koshino, H.;
Nakata, T. Tetrahedron Lett. 1999, 40, 3597. (e) Shintani, R.; Park, S.;
Hayashi, T. J. Am. Chem. Soc. 2007, 129, 14866. (f) Liu, W.; Chen, D.;
Zhu, X.-Z.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 8734.
(4) For examples of stoichiometric reactions, see: (a) Hoffmann,
H. M. R.; Otte, A. R.; Wilde, A. Angew. Chem., Int. Ed. Engl. 1992,
31, 234. (b) Wilde, A.; Otte, A. R.; Hoffmann, H. M. R. J. Chem. Soc.,
Chem. Commun. 1993, 615. (c) Otte, A. R.; Wilde, A.; Hoffmann,
H. M. R. Angew. Chem., Int. Ed. Engl. 1994, 33, 1280. (d) Hoffmann,
H. M. R.; Otte, A. R.; Wilde, A.; Menzer, S.; Williams, D. J. Angew.
Chem., Int. Ed. Engl. 1995, 34, 100.
† Kyoto University.
‡ Institute of Materials Research and Engineering.
(1) For reviews on palladium-catalyzed allylic substitutions, see:
(a) Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011,
111, 1846. (b) Rios, I. G.; Rosas-Hernandez, A.; Martin, E. Molecules
2011, 16, 970. (c) Norsikian, S.; Chang, C.-W. Curr. Org. Synth. 2009, 6,
264. (d) Trost, B. M.; Fandrick, D. R. Aldrichimica Acta 2007, 40, 59.
(e) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (f) Negishi,
E., Ed. Handbook of Organopalladium Chemistry for Organic Synthesis;
John Wiley & Sons: Hoboken, NJ, 2002; Vol. 2. (g) Hayashi, T. J. Organomet.
Chem. 1999, 576, 195. (h) Helmchen, G. J. Organomet. Chem. 1999,
576, 203.
(5) (a) Grigg, R.; Kordes, M. Eur. J. Org. Chem. 2001, 707.
(b) Shintani, R.; Park, S.; Shirozu, F.; Murakami, M.; Hayashi, T.
J. Am. Chem. Soc. 2008, 130, 16174. (c) Shintani, R.; Tsuji, T.; Park, S.;
Hayashi, T. J. Am. Chem. Soc. 2010, 132, 7508. (d) Shintani, R.; Moriya,
K.; Hayashi, T. Chem. Commun. 2011, 47, 3057.
(2) Hegedus, L. S.; Darlington, W. H.; Russell, C. E. J. Org. Chem.
1980, 45, 5193.
r
10.1021/ol300852v
Published on Web 04/24/2012
2012 American Chemical Society