Z. Yin, Org. Lett., 1999, 1, 1855; (c) C.-J. Li, Chem. Rev., 1993,
93, 2023; (d) T.-P. Loh, J.-M. Huang, K.-C. Xu, S.-H. Goh and
J. J. Vittal, Tetrahedron Lett., 2000, 41, 6511; (e) T.-P. Loh,
K.-T. Tan, J.-Y. Yang and C.-L. Xiang, Tetrahedron Lett., 2001,
42, 8701; (f) T.-P. Loh, K.-T. Tan and Q.-Y. Hu, Tetrahedron
Lett., 2001, 42, 8705; (g) C.-J. Li, Acc. Chem. Res., 2002, 35, 533;
(h) J.-M. Huang, K.-C. Xu and T.-P. Loh, Synthesis, 2003, 5, 755;
(i) T.-P. Loh, Z. Yin, H.-Y. Song and K.-L. Tan, Tetrahedron
Lett., 2003, 44, 911; (j) K.-T. Tan, S.-S. Chng, H.-S. Cheng and
T.-P. Loh, J. Am. Chem. Soc., 2003, 125, 2958; (k) H.-S. Cheng and
T.-P. Loh, Pure Appl. Chem., 2005, 77, 1199; (l) L. W. Chung,
T. H. Chan and Y.-D. Wu, Organometallics, 2005, 24, 1598;
(m) C.-J. Li, Chem. Rev., 2005, 105, 3095; (n) L. Keinicke and
R. Madsen, Org. Biomol. Chem., 2005, 3, 4124; (o) A. Palmelund
and R. Madsen, J. Org. Chem., 2005, 70, 8248; (p) F. G. Hansen,
E. Bundgaard and R. Madsen, J. Org. Chem., 2005, 70, 10139;
(q) A. E. Hakansson, A. Palmelund, H. Holm and R. Madsen,
Chem.–Eur. J., 2006, 12, 3243; (r) W.-Q. Kong, C.-L. Fu and
S.-M. Ma, Org. Biomol. Chem., 2008, 6, 4587; (s) X.-W. Sun,
M. Liu, M.-H. Xu and G.-Q. Lin, Org. Lett., 2008, 10, 1259;
(t) J. H. Dam, P. Fristrup and R. Madsen, J. Org. Chem., 2008, 73,
3228.
Fig.
1
Reaction pathway for the electrochemical allylation of
aldehyde in aqueous media.
3 (a) P. T. Anastas and J. C. Warner, Green Chemistry, Theory
and, Practice, Oxford University Press, New York, 1997;
(b) P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002,
35, 686.
4 (a) K. Uneyama, H. Matsuda and S. Torii, Tetrahedron Lett.,
1984, 25, 6017; (b) R. Grigg, B. Putnikovic and C. J. Urch,
Tetrahedron Lett., 1997, 38, 6307; (c) S. Seka, O. Burize,
Scheme 1 Reaction pathway for the electrochemical allylation of
J. Y. Nedelec and J. Perichon, Chem.–Eur. J., 2002, 8, 2534;
´ ´ ´
aldehyde in aqueous media.
(d) G. Hilt and Konstantin I. Smolko, Angew. Chem., Int. Ed.,
2001, 40, 3399; (e) G. Hilt, Angew. Chem., Int. Ed., 2002, 41, 3586;
(f) D. Nematollahi and R. A. Rahchamani, J. Electroanal. Chem.,
2002, 520, 145; (g) G. Hilt, Angew. Chem., Int. Ed., 2003, 42, 1720;
´
(h) P. Gomes, C. Gosmini and J. Perichon, J. Org. Chem., 2003, 68,
1142; (i) Z. Zha, A. Hui, Y. Zhou, Q. Miao, Z. Wang and
H. Zhang, Org. Lett., 2005, 7, 1903.
5 J.-M. Huang and Y. Dong, Chem. Commun., 2009, 3943.
6 K. Danielmeier, K. Schierle and E. Steckhan, Tetrahedron, 1996,
52, 9743.
7 The yield was very low when the chamber was separated by
sintered glass. For the cation-exchange membrane, Nafions 324
and Nafions 966 did not give good yields also. In these cases,
migration of the organic starting material to the anode chamber
was observed.
with a catalytic amount of Zn consumption for each cycle
instead of a sacrificial Zn anode. Studies have shown that the
fast in situ reduction of Zn2+ on the Zn cathode to regenerate
fresh and active Zn(0) for the next cycle of allylation reaction,
constitutes a key step for the catalytic C–C bond transformation
in aqueous media. Hence, the environmental friendliness and
high efficiency render this methodology an attractive alternative
for the synthesis of homoallylic alcohols. Further investigation
to determine the mechanism of this reaction and to expand its
scope is underway in our laboratory.
We express appreciation to Prof. Ye Jian-Shan and
Prof. Zhang Wei-De for valuable discussion on the
electrochemical process. We are grateful to the National
Natural Science Foundation of China (Grant 20972055).
8 See ESIw for cyclic voltammograms.
9 See ESI for cyclic voltammogramsw and discussion on the results.
10 In contrast, an experiment of the electrodepositon of 1.5 mmol
ZnSO4 in a solution of NH4Cl (0.1 M) and THF (5 mL : 5 mL) in
cathode chamber produced a layer of loosely packed Zn particles
on the Zn electrode. And the electrodeposited Zn particles can be
easily scraped from the Zn electrode.
11 See supporting information for the spectra of XRD and XPS.
12 CV studies were carried out on the aldehyde alone in the solvent-
supporting electrolyte system and the bromide alone in the same
system. The reductive peak potential for allylbromide is
about À0.9 V, and that of benzaldehyde is about À1.1 V. For
the details of CV experiments and the results, please refrer to ESIw.
13 M. C. C. Areias, L. W. Bieber, M. Navarro and F. B. Diniz,
J. Electroanal. Chem., 2003, 558, 125.
Notes and references
1 (a) Y. Yamamoto and N. Asao, Chem. Rev., 1993, 93, 2207;
(b) M. Rottlander, L. Boymond, L. Berillon, A. Lepre-tre,
¨
G. Varchi, S. Avolio, H. Laaziri, G. Queguiner, A. Ricci, G. Cahiez
and P. Knochel, Chem.–Eur. J., 2000, 6, 767; (c) S. E. Denmark and
J. Fu, Chem. Commun., 2003, 167; (d) Z.-J. Zhang, B.-S. Wan and
H.-L. Chen, Chin. J. Org. Chem., 2003, 23, 636; (e) J. W. J. Kennedy
and D. G. Hall, Angew. Chem., Int. Ed., 2003, 42, 4732.
2 For recent leading reviews and papers, see: (a) C.-J. Li,
Tetrahedron, 1996, 52, 5643; (b) T.-P. Loh, J.-R. Zhou and
14 See ESI (a table) for the yields and Zn consumption for each
cycle.
ꢀc
This journal is The Royal Society of Chemistry 2010
2288 | Chem. Commun., 2010, 46, 2286–2288