Journal of Medicinal Chemistry
Page 6 of 7
1
2
(2) Liu, T. C.; Huang, C. J.; Chu, Y. C.; Wei, C. C.; Chou, C. C.;
(19) Yamamoto, K.; Burnett, J. C.; Jougasaki, M.; Nishimura, R.
Chou, M. Y. C.; Chou, K.; Yang, J. J. Cloning and expression of
ZAK, a mixed lineage kinaseꢀlike protein containing a leucineꢀzipper
and a sterileꢀalpha motif. Biochem. Bioph. Res. Commun. 2000, 274,
811ꢀ816.
(3) Gotoh, I.; Adachi, M.; Nishida, E. Identification and characteriꢀ
zation of a novel MAP kinase kinase kinase, MLTK. J. Biol. Chem.
2001, 276, 4276ꢀ4286.
(4) Rana, A.; Rana, B.; Mishra, R.; Sondarva, G.; Rangasamy, V.;
Das, S.; Viswakarma, N.; Kanthasamy, A. Mixed lineage kinaseꢀcꢀ
Jun Nꢀterminal kinase axis: a potential therapeutic target in cancer.
Genes Cancer 2013, 4, 334ꢀ341.
(5) Abe, S.; Yagi, T.; Ishiyama, S.; Hiroe, M.; Marumo, F.; Ikawa,
Y. Molecular cloning of a novel serine/threonine kinase, MRK, possiꢀ
bly involved in cardiac development. Oncogene 1995, 11, 2187ꢀ2195.
(6) Miyata, Y.; Akashi, M.; Nishida, E. Molecular cloning and
characterization of a novel member of the MAP kinase superfamily.
Genes Cells 1999, 4, 299ꢀ309.
A.; Bailey, K. R.; Saito, Y.; Nakao, K.; Redfield, M. M. Superiority
of brain natriuretic peptide as a hormonal marker of ventricular sysꢀ
tolic and diastolic dysfunction and ventricular hypertrophy. Hypertenꢁ
sion 1996, 28, 988ꢀ994.
(20) Mathea, S.; Azeez, K. R. A.; Salah, E.; Tallant, C.; Wolfreys,
F.; Konietzny, R.; Fischer, R.; Lou, H. J.; Brennan, P. E.; Schnapp,
G.; Pautsch, A.; Kessler, B. M.; Turk, B. E.; Knapp, S. Structure of
the human protein kinase ZAK in complex with vemurafenib. ACS
Chem. Biol. 2016, 11, 1595ꢀ1602.
(21) Sauter, K. A. D.; Magun, E. A.; Iordanov, M. S.; Magun, B. E.
ZAK is required for doxorubicin, a novel ribotoxic stressor, to induce
SAPK activation and apoptosis in HaCaT cells. Cancer Biol. Ther.
2010, 10, 258ꢀ266.
(22) Vin, H.; Ojeda, S. S.; Chine, G.; Leung, M. L.; Chitsazzadeh,
V.; Dwyer, D. W.; Adelmann, C. H.; Restrepo, M.; Richards, K. N.;
Stewart, L. R.; Du, L.; Ferguson, S. B.; Chakravarti, D.; Ehrenreiter,
K.; Baccarini, M.; Ruggieri, R.; Curry, J. L.; Kim, K. B.; Ciurea, A.
M.; Duvic, M.; Prieto, V. G.; Ullrich, S. E.; Dalby, K. N.; Flores, E.
R.; Tsai, K. Y. BRAF inhibitors suppress apoptosis through offꢀtarget
inhibition of JNK signalling. Elife 2013, 2, e00969.
(23) Vin, H.; Ching, G.; Ojeda, S. S.; Adelmann, C. H.; Chitsazzaꢀ
deh, V.; Dwyer, D. W.; Ma, H.; Ehrenreiter, K.; Baccarini, M.; Rugꢀ
gieri, R.; Curry, J. L.; Ciurea, A. M.; Duvic, M.; Busaidy, N. L.; Tanꢀ
nir, N. M.; Tsai, K. Y. Sorafenib suppresses JNKꢀdependent apoptosis
through inhibition of ZAK. Mol. Cancer Ther. 2014, 13, 221ꢀ229.
(24) Zhang, C.; Spevak, W.; Zhang, Y.; Burton, E. A.; Ma, Y.;
Habets, G.; Zhang, J.; Lin, J.; Ewing, T.; Matusow, B.; Tsang, G.;
Marimuthu, A.; Cho, H.; Wu, G.; Wang, W.; Fong, D.; Nguyen, H.;
Shi, S.; Womack, P.; Nespi, M.; Shellooe, R.; Carias, H.; Powell, B.;
Light, E.; Sanftner, L.; Walters, J.; Tsai, J.; West, B. L.; Visor, G.;
Rezaei, H.; Lin, P. S.; Nolop, K.; Ibrahim, P. N.; Hirth, P.; Bollag, G.
RAF inhibitors that evade paradoxical MAPK pathway activation.
Nature 2015, 526, 583ꢀ586.
(25) Davis, M. I.; Hunt, J. P.; Herrgard, S.; Ciceri, P.; Wodicka, L.
M.; Pallares, G.; Hocker, M.; Treiber, D. K.; Zarrinkar, P. P. Comꢀ
prehensive analysis of kinase inhibitor selectivity. Nat. Biotech. 2011,
29, 1046ꢀ1051.
(26) Li, Y.; Cheng, H.; Zhang, Z.; Zhuang, X.; Luo, J.; Long, H.;
Zhou, Y.; Xu, Y.; Taghipouran, R.; Li, D.; Patterson, A.; Smaill, J.;
Tu, Z.; Wu, D.; Ren, X.; Ding, K. Nꢀ(3ꢀethynylꢀ2, 4ꢀdifluorophenyl)
sulphonamide derivatives as selective Raf inhibitors. ACS Med.
Chem. Lett. 2015, 6, 543ꢀ547.
(27) Auld, D. S.; Zhang, Y. Q.; Southall, N. T.; Rai, G.; Landsman,
M.; Maclure, J.; Langevin, D.; Thomas, C. J.; Austin, C. P.; Inglese, J.
A. A basis for reduced chemical library inhibition of firefly luciferase
obtained from directed evolution. J. Med. Chem. 2009, 52, 1450ꢀ
1458;
(28) Walsh, D. A.; Glass, D. B. Utilization of the inhibitor protein
of adenosine cyclic monophosphateꢀdependent protein kinase, and
peptides derived from it, as tools to study adenosine cyclic monoꢀ
phosphateꢀmediated cellular processes. Method Enzymol. 1991, 201,
304ꢀ316.
(29) Chinchilla, R.; Najera, C. The sonogashira reaction: a boomꢀ
ing methodology in synthetic organic chemistry. Chem. Rev. 2007,
107, 874ꢀ922.
(30) Definition of S(10) and S(1): S(10)=(number of nonꢀmutant
kinases with %Ctrl <10)/(number of nonꢀmutant kinases tested);
S(1)=(number of nonꢀmutant kinases with %Ctrl <1)/(number of
non0mutant kinases tested).
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) Manley, P. W.; Drueckes, P.; Fendrich, G.; Furet, P.; Liebetanz,
J.; Baron, G. M.; Mestan, J.; Trappe, J.; Wartmann, M.; Fabbro, D.
Extended kinase profile and properties of the protein kinase inhibitor
nilotinib. Biochim. Biophys. Acta 2010, 1804, 445ꢀ453.
(8) Chang, Y.; Zhang, Q. W.; Li, Z. Q.; Ding, K.; Lu, X. Y. Leuꢀ
cineꢀzipper and sterileꢀα motif kinase (ZAK): a potential target for
drug discovery. Curr. Med. Chem. 2016, 23, 3801ꢀ3812.
(9) Wong, J.; Smith, L. B.; Magun, E. A.; Engstrom, T.; Howard,
K. K.; Jandhyala, D. M.; Thorpe, C. M.; Magun, B. E.; Wood, L. J.
Small molecule kinase inhibitors block the ZAKꢀdependent inflamꢀ
matory effects of doxorubicin. Cancer Biol. Ther. 2013, 14, 56ꢀ63.
(10) Stone, S. M.; Thorpe, C. M.; Ahluwalia, A.; Rogers, A. B.;
Obata, F.; Vozenilek, A.; Kolling, G. L.; Kane, A. V.; Magun, B. E.;
Jandhyala, D. M. Shiga toxin 2ꢀinduced intestinal pathology in infant
rabbits is aꢀsubunit dependent and responsive to the tyrosine kinase
and potential ZAK inhibitor imatinib. Front. Cell. Infect. Mi. 2012, 2,
135ꢀ146.
(11) Eleanore, A. G.; Gallow, M. G.; Waldbaum, L.; Thomas, S.;
Ruggieri, R. MRK, a mixed lineage kinaseꢀrelated molecule that plays
a role in γꢀradiationꢀinduced cell cycle arrest. J. Biol. Chem. 2002,
277, 13873ꢀ13882.
(12) Cheng, Y. C.; Kuo, W. W.; Wu, H. C.; Lai, T. Y.; Wu, C. H.;
Hwang, J. M.; Wang, W. H.; Tsai, F. J.; Yang, J. J.; Huang, C. Y.;
Chu, C. H. ZAK induces MMPꢀ2 activity via JNK/p38 signals and
reduces MMPꢀ9 activity by increasing TIMPꢀ1/2 expression in H9c2
cardiomyoblast cells. Mol. Cell. Biochem. 2009, 325, 69ꢀ77.
(13) Yang, J. J. Mixed lineage kinase ZAK utilizing MKK7 and
not MKK4 to activate the cꢀJun Nꢀterminal kinase and playing a role
in the cell arrest. Biochem. Biophys. Res. Commun. 2002, 297, 105ꢀ
110.
(14) Huang, C. Y.; Chueh, P. J.; Tseng, C. T.; Liu, K. Y.; Tsai, H.
Y.; Kuo, W. W.; Chou, M. Y.; Yang, J. J. ZAK reꢀprograms atrial
natriuretic factor expression and induces hypertrophic growth in H9c2
cardiomyoblast cells. Biochem. Biophys. Res. Commun. 2004, 324,
973ꢀ980.
(15) Hsieh, Y. L.; Tsai, Y. L.; Shibu, M. A.; Su, C. C.; Chung, L.
C.; Pai, P.; Kuo, C. H.; Yeh, Y. L.; Viswanadha, V. P.; Huang, C. Y.
ZAK induces cardiomyocyte hypertrophy and brain natriuretic pepꢀ
tide expression via p38/JNK signalling and GATA4/cꢀJun transcripꢀ
tional factor activation. Mol. Cell. Biochem. 2015, 405, 1ꢀ9.
(16) Huang, C. Y.; Kuo, W. W.; Chueh, P. J.; Tseng, C. T.; Chou,
M. Y.; Yang, J. J. Transforming growth factorꢀβ induces the expresꢀ
sion of ANF and hypertrophic growth in cultured cardiomyoblast cells
through ZAK. Biophys. Res. Commun. 2004, 324, 424ꢀ431.
(17) Sugden, P. H.; Clerk, A. Cellular mechanisms of cardiac hyꢀ
pertrophy. J. Mol. Med. 1998, 76, 725ꢀ746.
(18) Hanford, D. S.; Thuerauf, D. J.; Murray, S. F.; Glembotski, C.
C. Brain natriuretic peptide is induced by α1ꢀadrenergic agonists as a
primary response gene in cultured rat cardiac myocytes. J. Biol.
Chem. 1994, 269, 26227ꢀ26233.
ACS Paragon Plus Environment