3
,4
An Expeditious Entry to
-Azabicyclo[3.3.1]nonane N-Oxyl (ABNO):
Another Highly Active Organocatalyst for
Oxidation of Alcohols
oxidations have the highest priority in the contemporary
pharmaceutical industry as efficient, mild, and environmentally
9
5
acceptable methods.
As part of our research program directed toward the develop-
ment of novel organocatalysts for advanced organic synthesis,
we recently reported that azaadamantane-type nitroxyl radicals,
namely, 2-azaadamantane N-oxyl [AZADO (2a)] and 1-Me-
AZADO (2b), are robust alternatives to TEMPO with a
markedly expanded substrate applicability (Figure 1).
Masatoshi Shibuya, Masaki Tomizawa, Yusuke Sasano, and
Yoshiharu Iwabuchi*
6
7
,8
Graduate School of Pharmaceutical Sciences, Tohoku
UniVersity, 6-3 Aobayama, Sendai 980-8578, Japan
FIGURE 1. Design concept of AZADO.
We confirmed with some surprise that AZADOs exhibit
extremely aggressive activities beyond our expectations and
offer more than 20-fold higher catalytic efficiency in the
oxidation of alcohols, including hindered secondary alcohols
that TEMPO completely fails to efficiently oxidize to their
7
corresponding products. A preliminary structure-activity
comparison between AZADO, 1-Me-AZADO, and 1,3-dimeth-
yl-AZADO indicated that the steric effect near the active center
exerts a critical impact on catalytic efficiency.
7
Apractical,three-stepsyntheticrouteto9-azabicyclo[3.3.1]nonane
N-oxyl (ABNO, 3), an unhindered, stable class of nitroxyl
radical, has been developed. ABNO exhibits a highly active
nature compared with TEMPO in the catalytic oxidation of
alcohols to their corresponding carbonyl compounds.
Although we have developed gram-scale routes to AZADO
(2a) and 1-Me-AZADO (2b) starting from commercially avail-
able 1,3-adamantanediol via a ten-step synthesis and a six-step
7
synthesis, respectively, we inquired into a more readily
available alternative to AZADOs for the further development
of nitroxyl radical-based methodologies in organic chemistry.
As a logical extension, we were interested in bicyclic unhindered
Since its discovery, the stable class of nitroxyl radicals, as
exemplified by TEMPO (2,2,6,6-tetramethyl piperidinyl 1-oxyl
9
,10
nitroxyl radicals,
such as 9-azabicyclo[3.3.1]nonane N-oxyl
11
11,12
(
1); Figure 1), has been inspiring chemists to explore their novel
(ABNO, 3), 8-azabicyclo[3.2.1]octane N-oxyl (ABOO, 4),
and 7-azabicyclo[2.2.1]heptene N-oxyl (ABHO, 5) (Figure
1,2
uses in a wide range of molecular sciences. The most dynamic
behavior of nitroxyl radicals, their interconversion either to
oxoammonium ions or to hydroxyl amines, is successfully
exploited as a redox catalyst applicable to several synthetic
transformations. In particular, TEMPO-catalyzed alcohol
1
2-14
2).
(
1) Likhtenshtein, G. I.; Yamauchi, J.; Nakatsuji, S.; Smirnov, A. I.; Tamura,
R. Nitroxides; Wiley-VCH, Weinheim, Germany, 2008.
2) For recent reviews, see: (a) Vogler, T.; Studer, A. Synthesis 2008, 1979–
(
1
4
2
993. (b) Galli, C.; Gentili, P.; Lanzalunga, O. Angew. Chem., Int. Ed. 2008,
7, 4790–4796. (c) Sciannamea, V.; J e´ r oˆ me, R.; Detrembleur, C. Chem. ReV.
008, 108, 1104–1126. (d) Soule, B. P.; Hyodo, F.; Matsumoto, K.; Simone,
FIGURE 2. Bicyclic nitroxyl radicals.
With accumulated knowledge indicating the stability of
N. L.; Cook, J. A.; Krishna, M. C.; Mitchell, J. B. Free Radical Biol. Med.
2
007, 42, 1632.
bridged-bicyclo N-oxyls being in the order of ABNO > ABOO
(
3) (a) Sheldon, R. A.; Arends, I. W. C. E. AdV. Synth. Catal. 2004, 346,
14-16
17
>
ABHO,
we chose ABNO as the focus of this study.
1
051–1071. (b) de Nooy, A. E.; Besemer, A. C.; van Bekkum, H. Synthesis
996, 1153–1174.
1
(4) (a) Wang, X.; Liu, R.; Jin, Y.; Liang, X. Chem.sEur. J. 2008, 14, 2679–
(5) (a) Caron, S.; Drugger, S. G.; Ruggeri, S. G.; Ragan, J. A.; Brown Ripin,
2
5
4
685. (b) Wang, N.; Liu, R.; Chen, J.; Liang, X. Chem. Commun. 2005, 5322–
324. (c) Liu, R.; Liang, X.; Dong, C.; Hu, X. J. Am. Chem. Soc. 2004, 126,
112–4113. (d) Miller, R. A.; Hoerrner, R. S. Org. Lett. 2003, 5, 285–287. (e)
D. H. Chem. ReV. 2006, 106, 2943. (b) Carey, J. S.; Laffan, D.; Thomson, C.;
Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337. (c) Drugger, R. W.; Ragen,
J. A.; Brown Ripin, D. H. Org. Proc. Res. DeV. 2005, 9, 253.
(6) Moad, G.; Rizzardo, E.; Solomon, D. H. Tetrahedron Lett. 1981, 22,
1165–1168.
(7) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc.
2006, 128, 8412–8413.
(8) (a) Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi, Y. Chem. Commun.
2009, 1739–1741. (b) Iwabuchi, Y. J. Synth. Org. Chem. (Tokyo) 2008, 66, 1076–
1084. (c) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. Org. Lett. 2008, 10, 4715–
4718. (d) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. J. Org. Chem. 2008, 73,
4750–4752.
Bolm, C.; Magnus, A. S.; Hildebrand, J. P. Org. Lett. 2000, 2, 1173–1475. (f)
De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org.
Chem. 1997, 62, 6974–6977. (g) Einhorn, J.; Einhorn, C.; Ratajczak, F.; Pierre,
J. L. J. Org. Chem. 1996, 61, 7452–7454. (h) Anelli, P. L.; Banfi, S.; Montanari,
F.; Quici, S. J. Org. Chem. 1989, 54, 2970–2972. (i) Anelli, P. L.; Biffi, C.;
Montanari, F.; Quici, S. J. Org. Chem. 1987, 52, 2559. (j) Semmelhack, M. F.;
Schmid, C. R.; Cort e´ s, D. A.; Chou, C. S. J. Am. Chem. Soc. 1984, 106, 3374–
3
1
376. (k) Cella, J. A.; Kelley, J. A.; Kenehan, E. F. J. Org. Chem. 1975, 40,
860–1862.
1
0.1021/jo900486w CCC: $40.75 2009 American Chemical Society
J. Org. Chem. 2009, 74, 4619–4622 4619
Published on Web 05/28/2009