906
V. Mirkhani et al. / Bioorg. Med. Chem. 12 (2004) 903–906
The partial support of this work by Isfahan University
Council of Research is acknowledged.
References and notes
1. (a) Groves, J. T.;Nemo, T. E. J. Am. Chem. Soc. 1983, 105,
5786. (b) Meunier, B. Bull. Soc. Chim. Fr. 1986, 4, 578.
2. (a) Sugimoto, H.;Tung, H. C.;Sawyer, D. T.
J. Am.
Chem. Soc. 1988, 110, 2465. (b) Mansuy, D. Pure Appl.
Chem. 1987, 59, 579. (c) Mansuy, D.;Battioni, P.;Bat-
tioni, J. P. Eur. J. Biochem. 1989, 184, 267.
3. Bartolini, O.;Meunier, B. J. Chem. Soc., Perkin Trans. 2
1984, 1967.
Figure 2. Absorption spectra of [Mn(III)-salophen]Cl in CH3CN/
H2O. The dashed curve is the same solution immediately after reaction
with excess NaIO4.
4. Amatsu, H.;Miyamoto, T. K.;Sasaki, Y. Bull. Chem.Soc.
Jpn. 1988, 61, 3193.
5. Hirao, T.;Ohno, M.;Ohshiro, Y. Tetrahedron Lett. 1990,
31, 6039.
6. Tsuchiya, S.;Seno, M. Chem. Lett. 1989, 263.
7. Ledon, H. J.;Durbut, V. F. J. Am. Chem. Soc. 1981, 103,
3601.
8. Traylor, T. G.;Fann, W. P.;Bandyopadhyay, D. J. Am.
Chem. Soc. 1989, 111, 8009.
9. Mohajer, D.;Tangestaninejad, S. Tetrahedron Lett. 1994,
35, 945.
10. Mohajer, D.;Tangestaninejad, S. J. Chem. Soc., Chem.
Commun. 1993, 240.
11. Srinivasa, K.;Michaud, P.;Kochi, J. K. J. Am. Chem.
Soc. 1986, 108, 2309.
from Merck or Fluka and were passed through a col-
umn containing active alumina to remove peroxidic
impurities. The electronic absorption spectra were
recorded with a Shimadzu UV-160 spectrophotometer.
1HNMR spectra were obtained with a Brucker AW80
(80 MHz) spectrometer. GLC analyses were performed
on a Shimadzu GC-16A instrument using a 2m column
packed with silicon DC-200 or Carbowax 20M. IR
spectra were recorded on a Shimadzu IR-435 spectro-
photometer.
12. Siddall, T. L.;Miyaura, N.;Huffman, J. C.;Kochi, J. K.
J. Chem. Soc., Chem. Commun. 1983, 1185.
13. Ganeshpure, P. A.;Satish, S. J. Chem. Soc., Chem. Com-
mun. 1988, 981.
14. Rihter, B.;Masnovi, J. J. Chem. Soc., Chem. Commun.
1988, 35.
15. Chellamani, A.;Alhaji, N. M. I.;Rajagopal, S.;Sevvel,
R.;Srinivasan, C. Tetrahedron 1995, 51, 12677.
16. Chellamani, A.;Alhaji, N. M. I.;Rajagopal, S. J. Chem.
Soc., Perkin Trans. 2 1997, 299.
17. Koola, J.;Kochi, J. K. J. Org. Chem. 1987, 52, 4545.
18. Koola, J.;Kochi, J. K. Inorg. Chem. 1987, 26, 908.
3.1. General procedure for oxidative decarboxylation of
ꢀ-aryl substituted carboxylic acids
All of the reactions were carried out at room temperature
in a 25 mL flask equipped with a magnetic stirring bar.
A solution of sodium periodate (2 mmol in 5 mL H2O)
was added to a mixture of carboxylic acid (1 mmol),
Mn-salophen (0.067 mmol) and imidazole (0.067 mmol)
in CH3CN (5 mL). Progress of the reaction was mon-
itored by TLC. After the reaction was completed, the
reaction products were extracted with CH2Cl2 (20 mL)
and were purified by silica gel plate or silica gel column
(eluent: CCl4–Et2O). The identities of products were
19. Kinneary, J. F.;Wagler, T. R.;Burrows, C. J.
hedron Lett. 1988, 29, 877.
Tetra-
1
confirmed by IR and H NMR spectral data.
20. Querci, C.;Strologo, S.;Ricci, M. Tetrahedron Lett. 1990,
31, 6577.
Multi scale oxidative decarboxylation of diphenylacetic-
acid (5 mmol) was also investigated. The results showed
that this compound decarboxylated with sodium periodate
in the presence of Mn(salophen)Cl in good yield (92%).
21. Tangestaninejad, S.;Mirkhani, V. J. Chem. Res (S) 1998,
820.
22. Tangestaninejad, S.;Mirkhani, V. Asian Chemistry Letters
1998, 4, 788.
23. Mirkhani, V.;Tangestaninejad, S.;Moghadam, M.;Kar-
imian, Z. Bioorg. Med. Chem. Lett. 2003, 13, 3433.
24. Porter, B.;Meunier, B. J. Chem. Soc., Perkin Trans 2
1985, 1735.
25. Komuro, M.;Nagatsu, Y.;Higuchi, T.;Hirobe, M.
Tetrahedron Lett. 1992, 33, 4949.
4. Conclusions
Although many oxidation systems that mimic cyto-
chrome P-450 dependent monooxygenase have been
reported, Mn(III)salophen/NaIO4 catalytic system have
the following advantages: (i) short reaction time (ii) high
efficiency for oxidative decarboxylation of carboxylic
acids;(iii) ease of preparation of the catalyst.
26. Komuro, M.;Higuchi, T.;Hirobe, M.
Medicinal Chem. 1995, 3, 55.
Bioorganic &
27. (a) Chellamani, A.;Alhaji, N. M. I.;Rajagopal, S.;
Sevvel, R.;Srinivasan, C. Tetrahedron 1995, 51, 12677.
(b) Chellamani, A.;Alhaji, N. M. I.;Rajagopal, S.
J. Chem. Soc., Perkin Trans. 2 1997, 299.
28. (a) Groves, J. T.;Lee, J.;Marla, S. S. J. Am. Chem. Soc.
1997, 119, 6269. (b) Collins, T. J.;Gordon-Wylies, W. J.
Am. Chem. Soc. 1989, 111, 4511.
29. Boucher, L. J. J. Inorg. Nucl. Chem. 1974, 36, 531.
30. Chen, D.;Martell, A. E. Inorg. Chem. 1987, 26, 1026.
31. Trivedi, B. M.;Bhattacharya, P. K.;Ganeshpure, P. A.;
Satish, S. J. Mol. Catal. 1992, 75, 109.
In comparison with other reported Schiff-base oxidation
systems, performance of the novel Mn(III)salophen/
NaIO4 system can be described as outstanding. There-
fore, in the list of suitable oxidants able to behave like
single oxygen donor to Schiff base complex, sodium
periodate is among the most efficient.