Journal of the American Chemical Society
Page 4 of 5
4. Wen, L.; Cai, X.; Xu, F.; She, Z.; Chan, W. L.; Vrijmoed, L. L.
steps, we therefore implemented a oneꢀpot enantioselective cyꢀ
clizationꢀkinetic resolution cascade of dibromide 23 by using a
Pdꢀ(R)ꢀAntPhos catalyst. Thus, aldehyde 21 was prepared in 98%
yield from phenol 20 by methylation. A nucleophilic addition
followed by a FriedelꢀCrafts reaction with 6 furnished the dibroꢀ
mide 23 in 52% yield. Gratifyingly, the cyclizationꢀkinetic resoluꢀ
P.; Jones, E. B. G.; Lin, Y. J. Org. Chem. 2009, 74, 1093.
5. Snyder, S. A.; Sherwood, T. C.; Ross, A. G. Angew. Chem., Int.
Ed. 2010, 49, 5146.
6. Fan, Y.; Feng, P.; Liu, M.; Pan, H.; Shi, Y. Org. Lett. 2011, 13,
4494.
1
2
3
4
5
6
7
8
o
7. For recent reviews on dearomatization, see: (a) Wu, W.ꢀT.;
Zhang, L.; You, S.ꢀL. Chem. Soc. Rev. 2016, 45, 1570. (b) Sun,
W.; Li, G.; Hong, L.; Wang, R. Org. Biomol. Chem. 2016, 14,
2164. (c) Zhuo, C.ꢀX.; Zhang, W.; You, S.ꢀL. Angew. Chem., Int.
Ed. 2012, 51, 12662. (d) Roche, S. P.; Porco, J. A., Jr. Angew.
Chem., Int. Ed. 2011, 50, 4068. (e) Pouýegu, L.; Deffieux, D.;
Quideau, S. Tetrahedron 2010, 66, 2235.
8. For selected recent examples, see: synthesis (a) Douki, K.; Ono,
H.; Taniguchi, T.; Shimokawa, J.; Kitamura, M.; Fukuyama, T. J.
Am. Chem. Soc. 2016, 138, 14578. (b) Qi, J.; Beeler, A. B.;
Zhang, Q.; Porco, J. A., Jr. J. Am. Chem. Soc. 2010, 132, 13642.
methodology (c) Zhuo, C.ꢀX.; You, S.ꢀL. Angew. Chem., Int. Ed.
2013, 52, 10056. (d) Rousseaux, S.; GarciaꢀFortanet, J.; Sanchez,
M. A. D. A.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 9282.
(e) GarciaꢀFortanet, J.; Kessler, F.; Buchwald, S. L. J. Am. Chem.
Soc. 2009, 131, 6676.
tion cascade proceeded smoothly at 100 C for 20 h with K2CO3
as the base provided product 24 in 52% yield and 96% ee. It
should be noted that the formation of only a single diastereomer
24 was observed in the reaction and its optical purity started at
~50% ee and reached to 96% ee after the kinetic Heck process
proceeded. The following steps for the synthesis of (+)ꢀdalesconol
A were similar to those for (+)ꢀdalesconol B. Thus, a sequence of
hydrogenationꢀStille couplingꢀDDQ oxidationꢀhydrolysis cyclizaꢀ
tion cascadeꢀglobal demethylation completed the enantioselective
synthesis of dalesconol A, which consisted of 9 linear steps and
11% overall yield from commercially available starting material
20. Furthermore, the oneꢀpot enantioselective cyclizationꢀkinetic
resolution cascade was also successfully applied to the synthesis
of (+)ꢀdalesconol B, leading to only 9 linear steps of its overall
synthesis.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
9. Du, K.; Guo, P.; Chen, Y.; Cao, Z.; Wang, Z.; Tang, W. Angew.
Chem., Int. Ed. 2015, 54, 3033.
In conclusion, we have accomplished the first enantioselective
syntheses of immunosuppressants (+)ꢀdalesconol A and B in a
highly efficient and concise manner, which features an unpreceꢀ
dented enantioselective palladiumꢀcatalyzed dearomative cyclizaꢀ
tionꢀkinetic resolution cascade to install the sterically congested
chiral allꢀcarbon quaternary center, an effective sterically hinꢀ
dered Stille coupling, a powerful DDQ oxidation to furnish all
requisite unsaturation, and a tandem hydrolysisꢀMichael addition
ring closure sequence. Both Dalesconol A and B can be prepared
within 9 steps from commercially available starting materials with
a scalable synthetic route, which should facilitate the discovery
and the development of new immunosuppressants.
10. A series of chiral monophosphorus ligands, bases, and solvents
were screened, and see Supporting Information for more details.
11. (a) Fu, W.; Nie, M.; Wang, A.; Cao, Z.; Tang, W. Angew. Chem.,
Int. Ed. 2015, 54, 2520. (b) Nie, M.; Fu, W.; Cao, Z.; Tang, W.
Org. Chem. Front. 2015, 2, 1322. (c) Hu, N.; Li, K.; Wang, Z.;
Tang, W. Angew. Chem., Int. Ed. 2016, 55, 5044. (d) Cao, Z.; Du,
K.; Liu, J.; Tang, W. Tetrahedron 2016, 72, 1782. (e) Fu, W.;
Tang, W. ACS Catal. 2016, 6, 4814.
12. See Supporting Information for a rationale.
13. Racemic 14a was also subjected for kinetic resolution with a Pdꢀ
(R)ꢀAntPhos catalyst. At 61% conversion of Heck cyclization, the
enantiomerically enriched aryl bromide 14a’ was collected in
96% ee (S = 15).
14. CCDC 1528560 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge via
bridge Crystallographic Data Centre, 12 Union Road, Cambridge
Supporting Information
Full experimental details, characterization data, NMR spectra of
1, 2 and related intermediates, chiral HPLC trace of 1 and related
chiral intermediates, crystallographic data of 14a’. This inforꢀ
mation is available free of charge via the Internet at
Corresponding Author
Notes
G. Zhao and G. Xu contributed equally.
The authors declare no competing financial interest.
Acknowledgments
This work is dedicated to Professor K.C. Nicolaou on occasion of
his 70th birthday. The work is supported by the Strategic Priority
Research Program of the Chinese Academy of Sciences
XDB20000000, CAS (QYZDYꢀSSWꢀSLH029), NSFCꢀ21432007,
21272254, 21572246, and China Postdoctoral Science Foundaꢀ
tion 2015M571622, 2016T90397 (GZ).
CB21EZ,
UK;
fax:
(+44)1223ꢀ336ꢀ033;
or
deposꢀ
15. The formation of a rearrangement product was observed during
hydrogenation when Pd/C was used as the catalyst.
16. (a) Tang, W.; Capacci, A. G.; Wei, X.; Li, W.; White, A.; Patel,
N. D.; Savoie, J.; Gao, J. J.; Rodriguez, S.; Qu, B.; Haddad, N.;
Lu, B. Z.; Krishnamurthy, D.; Yee, N. K.; Senanayake, C. H. An-
gew. Chem., Int. Ed. 2010, 49, 5879. (b) Zhao, Q.; Li, C.; Senaꢀ
nayanke, C. H.; Tang, W. Chem. Eur. J. 2013, 19, 2261. (c)
Tang, W.; Patel, N. D.; Xu, G.; Xu, X.; Savoie, J.; Ma, S.; Hao,
M.ꢀH.; Keshipeddy, S.; Capacci, A. G.; Wei, X.; Zhang, Y.; Gao,
J. J.; Li, W.; Rodriguez, S.; Lu, B. Z.; Yee, N. K.; Senanayake, C.
H. Org. Lett. 2012, 14, 2258. (d) Xu, G.; Fu, W.; Liu, G.;
Senanayanke, C. H.; Tang, W. J. Am. Chem. Soc. 2014, 136, 570.
(e) Li, C.; Chen, D.; Tang, W. Synlett 2016, 27, 2183.
17. (a) Huang, J.; Yang, T.; Shia, K. Org. Lett. 2015, 17, 4248. (b)
Ospina, F.; Hidalgo, W.; Cano, M.; Schneider, B.; Otalvaro, F. J.
Org. Chem. 2016, 81, 1256.
18. Bassetti, M.; Ciceri, S.; Lancia, F.; Pasquini, C. Tetrahedron
Lett. 2014, 55, 1608.
References
1. (a) Zhang, Y. L.; Ge, H. M.; Zhao, W.; Dong, H.; Xu, Q.; Li, S.
H.; Li, J.; Zhang, J.; Song, Y. C.; Tan, R. X. Angew. Chem., Int.
Ed. 2008, 47, 5823. (b) Zhang, Y. L.; Zhang, J.; Jiang, N.; Lu, Y.
H.; Wang, L.; Xu, S. H.; Wang,W.; Zhang,G. F.; Xu, Q.; Ge, H.
M.; Ma,J.; Song, Y. C.; Tan, R. X. J. Am. Chem. Soc. 2011, 133,
5931.
2. For a recent total synthesis of cyclosporin A, see: Wu, X.;
Stockdill, J. L.; Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc.
2010, 132, 4098.
3. Fang, W.; Ji, S.; Jiang, N.; Wang, W.; Zhao, G. Y.; Zhang, S.;
Ge, H. M.; Xu, Q.; Zhang, A. H.; Zhang, Y. L.; Song, Y. C.;
Zhang, J.; Tan, R. X. Nat. Commun. 2012, 3, 1039.
4
ACS Paragon Plus Environment