8806
P. Scafato et al. / Tetrahedron 60 (2004) 8801–8806
by the following NMR method:16 a solution of Eu(hfc)3
(107 mg) and (C) or (K)-muscone (3.6 mg) in 0.5 ml of
CDCl3 was subjected to analysis by NMR. The peak
(doublet) caused by methyl group of the (R) enantiomer
shifted to 3.72 ppm, while that of the (S) shifted to
3.59 ppm. The ee were calculated from the area peak ratio.
7. (a) Naasz, R.; Arnold, L. A.; Pineschi, M.; Keller, E.; Feringa,
B. L. J. Am. Chem. Soc 1999, 121, 1104. (b) Arnold, L. A.;
Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc.
2001, 123, 5841. (c) Alexakis, A.; March, S. J. Org. Chem.
2002, 67, 8753. (d) Knopff, O.; Alexakis, A. Org. Lett. 2002, 4,
3835. (e) Alexakis, A.; Croset, K. Org. Lett. 2002, 4, 4147. (f)
Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem.
Soc. 2001, 123, 755. (g) Degrado, S. J.; Mizutani, H.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 13362. (h)
Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem.
Soc. 2002, 124, 779. (i) Luchaco-Cullis, C. A.; Hoveyda, A. H.
J. Am. Chem. Soc. 2002, 124, 8192. (j) Deng, H.; Isler, M. P.;
Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2002,
41, 1009. (k) Hird, A. W.; Hoveyda, A. H. Angew. Chem., Int.
Ed. 2003, 42, 1276. (l) Reetz, M. T.; Neugebauer, T. Angew.
Chem., Int. Ed. 1999, 38, 1799.
Acknowledgements
`
The authors thank Universita degli Studi della Basilicata
and MIUR-COFIN 2002 ‘Sintesi di aromi e fragranze’ for
their financial support. The authors thank the NMR
`
laboratory of the Universita di Bologna for recording the
31P NMR spectrum.
8. (a) Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vries,
A. H. M.; Naasz, R.; Feringa, B. L. Tetrahedron 2000,
56, 2865. (b) de Vries, A. H. M.; Meetsma, A.; Feringa,
B. L. Angew. Chem., Int. Ed. 1996, 35, 2374.
References and notes
1. (a) Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P.
Synthesis 1992, 503. (b) Pu, L. Chem. Rev. 1998, 98, 2405.
(c) Putala, M. Enantiomer 1999, 4, 243. (d) McCarthy, M.;
Guiry, P. J. Tetrahedron 2001, 57, 3809. (e) Chen, Y.; Yekta,
S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
9. Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew.
Chem., Int. Ed. 1985, 24, 1.
10. Alexakis, A.; Benhaim, C.; Rosset, S.; Humam, M. J. Am.
Chem. Soc. 2002, 124, 5262.
11. (a) Bergmann, E. D.; Pelchowicz, Z. J. Am. Chem. Soc. 1953,
75, 2663. (b) Dholakia, S.; Gillard, R. D.; Wimmer, F. L.
Polyhedron 1985, 4, 791. (c) Cicchi, S.; Bonanni, M.;
Cardona, F.; Revuelta, J.; Goti, A. Org. Lett. 2003, 5, 1773.
12. (a) Sutherland, I. O.; Ramsay, M. V. J. Tetrahedron 1965, 21,
3401. (b) Carter, R. E.; Dahlqvis, K.-I.; Berntsson, U. P. Org.
Magn. Res. 1977, 9, 44. (c) Rashidi-Ranjbar, P.; Sandstroem, J.
Proceedings of the 4th Conference on Circular Dichroism,
Bochum, Germany, 1991, p 152.
2. (a) Mikami, K.; Aikawa, K.; Yusa, Y.; Jodry, J. J.; Yamanaka,
´
M. Synlett 2002, 1561. (b) Delogu, G.; Vallee, Y. Recent Res.
Dev. Org. Chem. 2002, 6, 1. (c) Mikami, K.; Yamanaka, M.
Chem. Rev. 2003, 103, 3369.
3. Superchi, S.; Casarini, D.; Laurita, A.; Bavoso, A.; Rosini, C.
Angew. Chem., Int. Ed. 2002, 40, 451.
4. (a) Fujimoto, S.; Yoshikawa, K.; Itoh, M.; Kitahara, T. Biosci.
Biotechnol. Biochem. 2002, 66, 1389. (b) Kraft, V. P.;
Bajgrowitz, J. A.; Denis, C.; Frater, G. Angew. Chem., Int.
Ed. Engl. 2000, 39, 2980. (c) Brenna, E.; Fuganti, C.; Serra, S.
Tetrahedron: Asymmetry 2003, 14, 1. (d) Branca, Q.; Fischli,
A. Helv. Chim. Acta 1977, 95, 925. (e) Kamat, V. P.;
Hagiwara, H.; Suzuki, T.; Ando, M. J. Chem. Soc., Perkin
Trans. 1 1998, 2253. (f) Kamat, V. P.; Hagiwara, H.; Katsumi,
T.; Hoshi, T.; Suzuki, T.; Ando, M. Tetrahedron 2000, 56,
4397. (g) Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc.
1993, 115, 1593.
13. (a) Chen, W.; Xiao, J. Tetrahedron Lett. 2001, 42, 8737. (b)
Iuliano, A.; Scafato, P. Tetrahedron: Asymmetry 2003, 14,
611.
14. Mikami, K.; Yusa, Y.; Aikawa, K.; Hatamo, M. Chirality
2003, 15, 105.
15. To prepare (E)-cyclopentadec-2-en-1-one, the procedure of
Tanaka, K.; Ushio, H.; Kawabata, Y.; Suzuki, H. J. Chem.
Soc., Perkin Trans. 1 1991, 1445 has been followed. Here, the
C]C bond of 6 derives from an elimination reaction involving
an intermediate sulfoxide, in turn produced by oxidation of the
corresponding sulfide by oxone. However, instead of using
oxone to oxidize the sulfide to sulfoxide, we used the method
of H2O2/CF3COCH3, described by Lupattelli, P.; Ruzziconi,
R.; Scafato, P.; Degl’Innocenti, A.; Paolobelli, A. Synth.
Commun. 1997, 27, 441. In this way, no sulfone is formed; this
allows an easy separation of the desired sulfoxide from the
starting sulfide which can be recycled, increasing the overall
conversion.
5. (a) Alexakis, A.; Benhaim, C.; Fornioux, X.; van der Heuvel,
A.; Leveque, J. M.; March, S.; Rosset, S. Synlett 1999, 11,
1811. (b) Tanaka, K.; Matsui, J.; Suzuki, H. J. Chem. Soc.,
Perkin Trans. 1 1993, 153. (c) Choi, H. C.; Choi, J. Y.; Yang,
H. Y.; Kim, Y. H. Tetrahedron: Asymmetry 2002, 13, 801. (d)
Fraser, P. K.; Woodward, S. Chem. Eur. J. 2003, 9, 776. (e)
Alexakis, A.; Rosset, S.; Allamand, J.; March, S.; Guillen, F.;
Benhaim, C. Synlett 2001, 9, 1375. (f) Scafato, P.; Labano, S.;
Cunsolo, G.; Rosini, C. Tetrahedron: Asymmetry 2003, 14,
3873.
6. (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346. (b) Krause,
N.; Hoffmann-Roeder, A. Synthesis 2001, 2, 171. (c) Alexakis,
A.; Benhaim, C. Eur. J. Org. Chem. 2002, 3221.
16. Yamamoto, T.; Ogura, M.; Kanisawa, T. Tetrahedron 2002,
58, 9202.