Organometallics 2008, 27, 3639–3641
3639
Syntheses and Structures of 6,13-Dihydro-6,13-diborapentacenes:
π-Stacking in Heterocyclic Analogues of Pentacene
Jinhui Chen, Jeff W. Kampf, and Arthur J. Ashe III*
Department of Chemistry, UniVersity of Michigan, Ann Arbor, Michigan 48109-1055
ReceiVed June 2, 2008
proposed.10 Trivalent boron has a formally vacant 2p orbital
which might serve as an electron acceptor. Most of the prior
work has involved compounds with bulky B substituents.11
Although these bulky substituents generally enhance the kinetic
stability of boron compounds, they are also likely to prevent
any possible intermolecular π-stacking important for high charge
mobility in OFETs.
Summary: 6,13-Dibromo-6,13-dihydro-6,13-diborapentacene (1)
has been prepared by the reaction of 2,3-bis(trimethylsilyl)-
naphthalene with BBr3. The reaction of 1 with Me4Sn or
mesityllithium afforded the dimethyl deriVatiVe 2 or the dimesityl
deriVatiVe 3, respectiVely. In the solid state compounds 1 and
2 form cofacial π-stacks along the a crystal axes, albeit in
slightly different ways.
Organic semiconductors have potential applications as com-
ponents of light-emitting diodes,1 photovoltaics,2 and field-effect
transistors (OFETs).3 Intense research efforts have centered on
the use of polycyclic aromatic hydrocarbons (PAHs),3 e.g.
pentacene, and their electron-rich heterocyclic relatives4 as
p-type semiconductors for OFETs. In the solid state many PAHs
adopt a herringbone packing,5 which has less optimal intermo-
lecular orbital overlap than a cofacial π-stacking packing.6
Although many of the factors which influence solid-state packing
are not well understood, it has been observed empirically that
some substituted PAHs adopt a favorable cofacial stacking.7
The search for other π-stacking materials continues. Improved
n-type semiconductors structurally similar to PAHs but comple-
mentary in the type of charge carriers would also be highly
desirable.8 Promising preliminary investigations on PAHs with
electron-withdrawing substituents, particularly fluorine, have
been reported.9 The use of boron heterocycles has also been
We hypothesize that derivatives of the previously unknown
6,13-dihydro-6,13-diborapentacene ring system with small sub-
stituents at boron might circumvent these difficulties. Further-
more the antiaromatic four-π-electron character of the central
heterocyclic ring12 should facilitate electron transfer to these
compounds, as has been found for the related 5,10-dihydro-
5,10-diboraanthracenes.13 We report here on the first syntheses
of 6,13-dihydro-6,13-diborapentacenes (1-3), the π-stacking
structures of 1 and 2, and electrochemical data for 3.
Our synthesis of 1 relies on the known facile B/Si exchange
of arylsilanes with boron halides.14 The reaction of the readily
available 2,3-bis(trimethylsilyl)naphthalene15 with BBr3 in
toluene at 110 °C gave 22% of 1 as a yellow crystalline solid
(Scheme 1). Like most organoboron bromides, 1 is quite
moisture sensitive but can be handled using standard Schlenk
techniques. It is thermally stable to at least its melting point,
282 °C. 6,13-Dibromo-6.13-dihydro-6,13-diborapentacene (1)
has been fully characterized by 1H, 11B, and 13C NMR
spectroscopy, high-resolution mass spectroscopy, elemental
analysis and X-ray diffraction.16,17 The bromo groups of 1 can
be readily substituted for nucleophiles. Reaction of 1 with Me4Sn
gave the crystalline yellow dimethyl derivative 2 in 33% yield.
The reaction of 1 with mesityllithium afforded the dimesityl
derivative 3, which like other mesitylboranes is much less
sensitive to water and oxygen than 1 and 2. It seems likely that
* To whom correspondence should be addressed. E-mail: ajashe@
umich.edu.
(1) For reviews, see: (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B.
Angew. Chem., Int. Ed. 1998, 37, 402. (b) Chen, C.-T. Chem. Mater. 2004,
16, 4389.
(2) Review: Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16,
4533.
(3) Reviews: (a) Dimitrakopoulos, C. D.; Malenfant, P. R. L. AdV. Mater.
2002, 14, 99. (b) Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.;
Bre´das, J.-L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436.
(c) Sun, Y.; Liu, Y.; Zhu, D. J. Mater. Chem. 2005, 15, 53.
(4) Fichou, D. Handbook of Oligo- and Polythiophene; Wiley-VCH:
New York, 1999.
(5) (a) Holmes, D.; Kumaraswamy, S.; Matzger, A. J.; Vollhardt, K. P. C.
Chem. Eur. J. 1999, 5, 3399. (b) Mattheus, C. C.; Dros, A. B.; Baas, J.;
Meetsma, A.; de Boer, J. L.; Palstra, T. T. M. Acta Crystallogr. 2001, C57,
939.
(6) (a) Bre´das, J.-L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5804. (b) Curtis, M. D.; Cao, J.;
Kampf, J. W. J. Am. Chem. Soc. 2004, 126, 4318.
(10) Entwistle, C. D.; Marder, T. B. Chem. Mater. 2004, 16, 4574.
(11) (a) Kim, S.; Song, K.-H.; Kang, S. O.; Ko, J. Chem. Commun.
2004, 68. (b) Agou, T.; Kobayashi, J.; Kawashima, T. Org. Lett. 2006, 8,
2241.
(12) (a) Camp, R. N.; Marynick, D. S.; Graham, G. D.; Lipscomb, W. N.
J. Am. Chem. Soc. 1978, 100, 6781. (b) Budzelaar, P. H. M.; van der Kirk,
S. M.; Krogh-Jespersen, K.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986,
108, 3960.
(13) (a) Mu¨ller, P.; Huck, S.; Ko¨ppel, H.; Pritzkow, H.; Siebert, W. Z.
Naturforsch. 1995, 50b, 1476. (b) Akutsu, H.; Kozawa, K.; Uchida, T. Synth.
Met. 1995, 70, 1109. (c) Metz, M. V.; Schwartz, D. J.; Stern, C. L.; Nickias,
P. N.; Marks, T. J. Angew. Chem., Int. Ed. 2000, 39, 1312.
(14) (a) Bieller, S.; Zhang, F.; Bolte, M.; Bats, J. W.; Lerner, H.-W.;
Wagner, M. Organometallics 2004, 23, 2107. (b) Sole´, S.; Gabbaï, F. P.
Chem. Commun. 2004, 1284.
(7) (a) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am.
Chem. Soc. 2001, 123, 9482. (b) Moon, H.; Zeis, R.; Borkent, E.-J.; Besnard,
C.; Lovinger, A. J.; Siegrist, T.; Kloc, C.; Bao, Z. J. Am. Chem. Soc. 2004,
126, 15322. (c) Miao, Q.; Chi, X.; Xiao, S.; Zeis, R.; Lefenfeld, M.; Siegrist,
T.; Steigerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2006, 128, 1340.
(d) Grimme, S. Angew. Chem., Int. Ed. 2008, 47, 3430.
(8) Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bre´das, J.-L.;
Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436.
(9) (a) Heidenbhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.;
Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. J. Am. Chem. Soc. 2000, 122,
10240. (b) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.;
Inoue, Y.; Sato, F.; Tokito, S. J. Am. Chem. Soc. 2004, 126, 8138. (c) Yoon,
M. H.; Facchetti, A.; Stern, C. E.; Marks, T. J. J. Am. Chem. Soc. 2006,
128, 5792.
(15) Kitamura, T.; Fukatsu, N.; Fujiwara, Y. J. Org. Chem. 1998, 63,
8579.
10.1021/om8005068 CCC: $40.75
2008 American Chemical Society
Publication on Web 07/16/2008