Organic Letters
Letter
Notes
Scheme 5. Plausible Reaction Pathway under Z-Selective
Conditions
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Prof. Ryuta Miyatake (University of Toyama) for
assistance in X-ray crystallographic analysis. This work was
financially supported by JSPS KAKENHI Grant No.
JP15K05496.
REFERENCES
■
(1) (a) Elford, T. G.; Hall, D. G. Boronic Acids; Wiley-VCH: Weinheim,
Germany, 2011; pp 393−425. (b) Denmark, S. E.; Almstead, N. G. In
Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim,
Germany, 2000; Chapter 10.
tially form transition state B. Accordingly, the transition state is
cyclic for an η1-allylpalladium moiety and is open-chain for an
allylic boronate moiety. Allylboration of the benzaldehyde forms
a (Z)-vinylpalladium intermediate C. Finally, transmetalation of
C with tributylphenylstannane, followed by reductive elimination
from a vinylpalladium intermediate D, gives desired product
(1S,2R)-4aaa. This reasonably accounts for the observed
stereochemical outcome. If the phosphine ligand is absent, such
as the E-selective conditions, an η1-allylpalladium intermediate
would coordinate to the benzaldehyde in a different manner to
form the thermodynamically stable trans-decaline-like transition
state E (Scheme 6). This leads to desired product (1R,2S)-4aaa.
́
(2) Diner, C.; Szabo, K. J. J. Am. Chem. Soc. 2017, 139, 2.
(3) Chen, J. L.-Y.; Scott, H. K.; Hesse, M. J.; Willis, C. L.; Aggarwal, V.
K. J. Am. Chem. Soc. 2013, 135, 5316.
(4) (a) Sadhu, K. M.; Matteson, D. S. Organometallics 1985, 4, 1687.
(b) Vahabi, R.; Frey, W.; Pietruszka, J. J. Org. Chem. 2013, 78, 11549.
(c) Zhou, Q.; Srinivas, H. D.; Zhang, S.; Watson, M. P. J. Am. Chem. Soc.
2016, 138, 11989. (d) Sandford, C.; Aggarwal, V. K. Chem. Commun.
2017, 53, 5481.
(5) Vasseur, A.; Bruffaerts, J.; Marek, I. Nat. Chem. 2016, 8, 209.
(6) (a) Reid, W. B.; Spillane, J. J.; Krause, S. B.; Watson, D. A. J. Am.
Chem. Soc. 2016, 138, 5539. (b) Morrill, C.; Grubbs, R. H. J. Org. Chem.
2003, 68, 6031. (c) Morrill, C.; Funk, T. W.; Grubbs, R. H. Tetrahedron
Lett. 2004, 45, 7733. (d) Kiesewetter, E. T.; O’Brien, R. V.; Yu, E. C.;
Meek, S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2013, 135,
6026. (e) Marciniec, B.; Jankowska, M.; Pietraszuk, C. Chem. Commun.
2005, 663. (f) Hemelaere, R.; Carreaux, F.; Carboni, B. J. Org. Chem.
2013, 78, 6786.
Scheme 6. Plausible Reaction Pathway under E-Selective
Conditions
(7) Miura, T.; Nishida, Y.; Murakami, M. J. Am. Chem. Soc. 2014, 136,
6223.
(8) (a) Yamamoto, Y.; Miyairi, T.; Ohmura, T.; Miyaura, N. J. Org.
Chem. 1999, 64, 296. (b) Moriya, T.; Suzuki, A.; Miyaura, N. Tetrahedron
Lett. 1995, 36, 1887.
(9) Weber, F.; Ballmann, M.; Kohlmeyer, C.; Hilt, G. Org. Lett. 2016,
18, 548.
(10) Trost, B. M.; Cregg, J. J.; Quach, N. J. Am. Chem. Soc. 2017, 139,
5133.
(11) Miura, T.; Nakahashi, J.; Murakami, M. Angew. Chem., Int. Ed.
In summary, we developed complementary reaction con-
ditions to provide both (Z)- and (E)-homoallylic alcohols
possessing aryl groups at the alkene terminus using a catalyst-
controlled strategy. The reaction showed good scope and
functional group tolerance, many of which could pose difficulties
for other transition-metal-catalyzed alkene isomerizations of
alkenyl boronates. Thus, the catalytically generated allylic Pd/
boryl species promise to serve as synthetically useful
intermediates.
2017, 56, 6989.
́ ́
(12) (a) Posseme, F.; Deligny, M.; Carreaux, F.; Carboni, B. J. Org.
Chem. 2007, 72, 984. (b) Tao, Z.-L.; Adili, A.; Shen, H.-C.; Han, Z.-Y.;
Gong, L.-Z. Angew. Chem., Int. Ed. 2016, 55, 4322. (c) Park, J.; Choi, S.;
Lee, Y.; Cho, S. H. Org. Lett. 2017, 19, 4054. (d) Miura, T.; Nakahashi, J.;
Zhou, W.; Shiratori, Y.; Stewart, S. G.; Murakami, M. J. Am. Chem. Soc.
2017, 139, 10903.
́
́
(13) Trepanier, V. E.; Fillion, E. Organometallics 2007, 26, 30.
(14) Zanoni, G.; Pontiroli, A.; Marchetti, A.; Vidari, G. Eur. J. Org.
Chem. 2007, 2007, 3599.
ASSOCIATED CONTENT
* Supporting Information
■
(15) (a) Horino, Y.; Aimono, A.; Abe, H. Org. Lett. 2015, 17, 2824.
(b) Horino, Y.; Sugata, M.; Abe, H. Adv. Synth. Catal. 2016, 358, 1023.
(17) Horino, Y.; Sugata, M.; Sugita, T.; Aimono, A.; Abe, H.
Tetrahedron Lett. 2017, 58, 2131.
(18) CCDC No. 1560306 [(E)-anti-4aab]. The crystallographic data
can be obtained free of charge from The Cambridge Crystallographic
Data Centre.
S
The Supporting Information is available free of charge on the
Experimental procedure, characterization data, and NMR
X-ray crystallography data for (E)-anti-4aab (CIF)
(19) For the synthesis and reactions of enantioenriched α,γ-
disubstituted allylboronates, see refs 4b and 12d and refs cited therein.
(20) (a) Luithle, J. E. A.; Pietruszka, J. Liebigs Ann. 1997, 1997, 2297.
(b) Luithle, J. E. A.;Pietruszka, J.; Witt, A. Chem. Commun. 1998, 4, 2651.
(c) Luithle, J. E. A.; Pietruszka, J. J. Org. Chem. 1999, 64, 8287.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(d) Pietruszka, J.; Schone, N. Eur. J. Org. Chem. 2004, 2004, 5011.
̈
D
Org. Lett. XXXX, XXX, XXX−XXX