Lastly, cephalosporin-pBTZ conjugates were also screened
for antibacterial activity. As shown in Table 2, the conjugates
targeted Gram-positive bacteria, exhibiting both potent zones of
inhibition (see Supporting Information) and MIC values. Of
outstanding interest was both cephalosporin-pBTZ conjugates 13
and 16, demonstrating notable inhibition against M. vaccae and
B. subtilis, with MICs of 0.2 μM and <0.003 μM, respectively.
3.
Zumla, A.; Nahid, P.; Cole, S.T. Nat. Rev. Drug Dis. 2013, 12,
88-404.
3
4
5
.
.
Trefzer, C.; Skovierova, H.; Buroni, S.; Bobovska, A.; Nenci,
S.; Molteni, E.; Pojer, F.; Pasca, M. R.; Makarov, V.; Cole, S. T.;
Riccardi, G.; Mikusova, K.; Johnsson, K. J. Am. Chem. Soc.
2012, 134, 912-915.
a) Minarini, P. R. R.; de Souza, A. O.; Soares, E. G.; Barata, L. E.
S.; Silva, C. L.; Bentley, M. V. Maria Vitoria, L. B. Drug. Dev.
Ind.
Pharm.
2012,
38,
259-263.
b)
http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5211a1.htm c)
Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C. F. N. Engl. J.
Med . 2013, 368, 745-755.
Table 2. Minimum Inhibitory Determinations (μM) for Select Compounds.
B. subtilis
S. aureus
SG511
0.2
M. luteus
M. vaccae
6.
7.
Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C. F. N. Engl.
J. Med. 2013, 368, 745-755.
Cmpd.
ATCC
ATCC
10240
IMET 10670
6
633
Singh, R.; Manjunatha, U.; Boshoff, H. I. M.; Ha, Y. H.;
Niyomrattanakit, P.; Ledwidge, R.; Dowd, C. S.; Lee, I. Y; Kim,
P.; Zhang, L.; Kang, S.; Keller, T. H.; Jiricek, J.; Barry, C. E. III,
Science 2008, 322, 1392-1395.
1
, X = OAc
<0.1
nt
3.13
>200
nt
nt
0.03
0.20
0.8
nt
BTZ043
>200
12.5
12.5
1.56
0.4
8
.
Makarov, V.; Manina, G.; Mikusova, K.; Mollmann, U.; Ryabova,
O.; Saint-Joanis, B.; Dhar, N.; Pasca, M. R.; Buroni, S.; Lucarelli,
A. P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.;
Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider,
P.; McKinney, J. D.; Brodin, P.; Christophe, T.; Waddell, S.;
Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi,
V.; Bharath, S.; Gaonkar, S.; Shandil, R. K.; Balasubramanian, V.;
Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S. T.
Science 2009, 324, 801-804.
1
3
0.80-1.60
1.56
1
5a
5b
nt
1
0.1-0.2
<0.003
0.15-0.32
nt
1
6
1.56
nt
12.5
nt
9
1
.
Cheng, Y.; Moraski, G. C.; Cramer, J.; Miller, M. J.; Schorey J. S.
PLoS One. 2014, 9, e87483.
Ciprofloxicin
nt
0.
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.
M.; Raadsen, S. A.; Hartkoorn, R. C.; Ryabova, O. B.; Vocat, A.;
Decosterd, L. A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.;
Pojer, F.; Dyson, P. J.; Cole, S. T. EMBO Mol. Med. 2014, 6, 372-
Compounds were dissolved in MeOH/DMSO
KEY: B. subtilis = Bacillus subtilis, S. aureus. = Staphylococcus aureus, M.
luteus = Micrococcus luteus, M. vaccae = Mycobacterium vaccae.
nt = not tested
3
83.
To summarize, we have synthesized a focused set of
conjugates between pBTZ and both imidazopyridines and 7-
phenylacetamido cephalosporins and tested them for anti-TB
activity in the MABA assay. The product of direct conjugation
between pBTZ and imidazopyridine (compound 4) exhibited
anti-TB activity albeit not as impressive as its precursors and the
introduction of linkers between the two precursor scaffolds in 4
resulted in dramatic loss of activity. Anti-TB activity was
observed only for the very lipophilic 15a, whereas similarly
lipophilic analog 15b was completely inactive. Potent Gram-
positive antibacterial activity was seen for cephalosporin-pBTZ
conjugates 13 and 15-16.
11.
Lechartier, B.; Hartkoorn, R. C.; Cole, S. T. Antimicrob. Agents
Chemother. 2012, 56, 5790-5793.
1
2.
Moraski, G. C.; Markley, L. D.; Hipskind, P. A.; Boshoff, H; Cho,
S.; Franzblau, S. G.; Miller, M. J. ACS Med. Chem. Lett. 2011,
2, 466-470.
1
1
3.
4.
Hamad, B. Nat. Rev. Drug Dis. 2010, 9, 675-676.
a) Albrecht, H. A.; Beskid, G.; Christenson, J. G.; Deitcher, K. H.;
Georgopapadakou, N. H.; Keith, D. D.; Konzelmann, F. M.;
Pruess, D. L.; Wei, C. C. J. Med. Chem. 1994, 37, 400-407. b)
Albrecht, H. A.; Christenson, J. G. Adv. Med. Chem. 1992, 1,
2
07-234.
Acknowledgments
1
5.
O’Callaghan, C. H.; Sykes, R. B.; Staniworth, S. E.
Antimicrob. Agents Chemother. 1976, 10, 245-248.
We acknowledge the University of Notre Dame, and the NIH
(
NIH-2R01-AI054193-05A2) for support of this work. We
16.
Gao, C.; Ye, T. H.; Wang, N. Y.; Zeng, X. X.; Zhang, L. D.;
Xiong, Y.; You, X. Y.; Xia, Y.; Xu, Y.; Peng, C. T.; Zuo, W. Q.;
Wei, Y.; Yu, L.T. Bioorg. Med. Chem. Lett. 2013, 23, 4919-
acknowledge Nonka Sevova (Mass Spectrometry and Proteomics
Facility, UND) for mass spectroscopic analyses and Viktor
Krchňák for LC/MS and prep LC assistance.
4
922.
M.W.M
acknowledges an ECK Global Health Fellowship (2014-2015,
UND).
1
1
7.
8.
Peng, C. T.; Gao, C.; Wang, N. Y.; You, X. Y.; Zhang, L. D.;
Zhu, Y. X.; Xv, Y.; Zuo, W. Q.; Ran, K.; Deng, H. X.; Lei, Q.;
Xiao, K. J.; Yu, L. T.; Bioorg. Med. Chem. Lett. 2015, 25, 1373-
1
376.
References and notes
Moraski, G. C.; Markley, L. D.; Cramer, J.; Hipskind, P. A.;
Boshoff, H.; Bailey, M. A.; Alling, T.; Ollinger, J.; Parish, T.;
Miller, M. J. ACS Med.Chem. Lett. 2013, 4, 675-679.
1
2
.
.
Global Tuberculosis Report 2014,
Gandhi, N. R.; Nunn, P.; Dheda, K.; Schaaf, H. S.; Zignol, M.;
19.
Glinka, T.; Huie, K.; Cho, A.; Ludwikow, M.; Blais, J.; Griffith,
D.; Hecker, S.; Dudley, M. Bioorg. Med. Chem. 2003, 11, 591-
600.
Van Soolingen D.; Jensen, P.; Bayona, J. Lancet 2010, 375, 1830-
1
843.