Manganese-Catalyzed Epoxidations
A R T I C L E S
ligands.42-44 Organic catalysts for epoxidation have also been
developed, mainly for asymmetric transformations.45,46 Some
selenium,47-49 arsenic,50 and organofluorine51 compounds are
surprisingly active and selective catalysts, but they have obvious
limitations with respect to large-scale “green” processes.
However, the most pertinent category of epoxidation catalysts
here are the “soluble metal oxides”.
accelerate the reaction and protect acid sensitive epoxides from
ring opening. The solvents used (MeNO2 or chlorocarbons) are
not ideal for process reactions, and there may be problems
separating the product from the additive. MTO and tungsten-
based catalysts are suitable for large scale epoxidations, but their
use tends to be constrained by metal toxicity issues. Other
soluble metal oxides have reactivity profiles characteristic of
reactions mediated by free hydroxy radicals, that is, “Fenton
chemistry”.10,72
This paper describes the epoxidations of alkenes via a method
(reaction 1) that has several attributes. It involves reagents and
solvents that have manageable levels of toxicity and proceeds
at room temperature with high selectivity for the epoxide product
and with catalytic turnovers as high as 6700. Several manganese-
Prominent among simple, soluble metal oxide epoxidation
catalysts are systems derived from tungstic acid (H2WO4),
phosphate, and ammonium or phosphonium counterions to act
as phase transfer agents.52-61 Typically, these are formed in situ,
but catalytically active complexes such as (R4N)3{PO4(W(O)-
(O2)2)4} have been isolated and even characterized crystallo-
62
graphically. Noyori showed that terminal aliphatic alkenes
could be epoxidized by this system at 90 °C without organic
solvent by rapid stirring.63 Acid sensitive epoxides such as
phenyl oxirane are not stable to these conditions, however.63
Herrmann and co-workers found 0.1-1.0 mol % methyltrioxo-
rhenium (MeReO3 or MTO) is an epoxidation catalyst that
works in tert-butyl alcohol using 30% H2O2 at room temperature
or below.64,65 The Lewis acidity of the catalyst tends to mediate
the ring opening of sensitive epoxides to diols, but Sharpless’
group found that pyridine66 and other basic additives67-71
(2+) salts can be used, and the cosolvent can be selected from
DMF and tert-butyl alcohol, whichever is more suitable for the
substrate to be epoxidized.
(32) Hage, R.; Iburg, J. E.; Kerschner, J.; Koek, J. H.; Lempers, E. L. M.;
Martens, R. J.; Racheria, U. S.; Russell, S. W.; Swarthoff, T.; Vliet, M. R.
P. v.; Warnaar, J. B.; Wolf, L. v. d.; Krijnen, B. Nature 1994, 369, 637-
639.
(33) Quee-Smith, V. C.; DelPizzo, L.; Jureller, S. H.; Kerschner, J. L.; Hage,
R. Inorg. Chem. 1996, 35, 6461-6465.
73
Critical Role of Bicarbonate in the Reaction System.
Control experiments indicate the desired epoxidation reaction
only occurs in the presence of bicarbonate buffer. Attempts to
epoxidize 4-vinylbenzoic acid over a period of more than 24 h,
with and without 1 mol % MnSO4, in phosphate, triethanol-
amine, borate, or MOPS (3-{n-morpholino}propanesulfonic acid
buffer systems, all failed. Further investigations revealed that
the epoxidation is catalytic in bicarbonate. Table 1 shows
reactions for which good yields of epoxides were obtained using
only 0.25 equiv of NaHCO3.
The epoxidation of alkenes in the presence of bicarbonate
alone is known.74,75 Richardson76 has shown that a key aspect
of such reactions is that hydrogen peroxide and bicarbonate
combine in an equilibrium process to produce peroxymonocarbon-
ate77-79 (Figure 1). This entity should not be confused with
sodium percarbonate, the simple cocrystallite of sodium carbon-
ate and hydrogen peroxide,80 that does not epoxidize nonacti-
vated alkenes. The equilibrium that results in the formation of
peroxymonocarbonate is established in minutes, but epoxidation
reactions that rely on this species alone require reactions times
(34) Vos, D. D.; Bein, T. Chem. Commun. 1996, 917-918.
(35) Koek, J. H.; Kohlen, E. W. M. J.; Russell, S. W.; van der Wolf, L.; ter
Steeg, P. F.; Hellemons, J. C. Inorg. Chim. Acta 1999, 295, 189-199.
(36) Vos, D. E. D.; Sels, B. F.; Reynaers, M.; Rao, Y. V. S.; Jacobs, P. A.
Tetrahedron Lett. 1998, 39, 3221-3224.
(37) Berkessel, A.; Sklorz, C. A. Tetrahedron Lett. 1999, 40, 7965-7968.
(38) Shul’pin, G. B.; Suss-Fink, G.; Shul’pina, L. S. J. Mol. Catal. A: Chem.
2001, 170, 17-34.
(39) Brinksma, J.; Hage, R.; Kerschner, J.; Feringa, B. L. Chem. Commun. 2000,
537-538.
(40) Bolm, C.; Kadereit, D.; Valacchi, M. Synlett 1997, 687-688.
(41) Bolm, C.; Meyer, N.; Raabe, G.; Weyhermu¨ller, T.; Bothe, E. Chem.
Commun. 2000, 2435-2436.
(42) Costas, M.; Tipton, A. K.; Chen, K.; Jo, D.-H.; Que, L. J. Am. Chem. Soc.
2001, 123, 6722-6723.
(43) White, M. C.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123,
7194-7195.
(44) Chen, K.; Costas, M.; Kim, J.; Tipton, A. K.; Que, L. J. Am. Chem. Soc.
2002, 124, 3026-3035.
(45) Shu, L.; Shi, Y. J. Org. Chem. 2000, 65, 8807-8810.
(46) Shu, L.; Shi, Y. Tetrahedron 2001, 57, 5213-5218.
(47) Pradhan, B. P.; Chakraborty, S. Tetrahedron 1987, 43, 4487-4495.
(48) Betzemeier, B.; Lhermitte, F.; Knochel, P. Synlett 1999, 489-491.
(49) ten Brink, G.-J.; Fernandes, B. C. M.; van Vliet, M. C. A.; Arends, I. W.
C. E.; Sheldon, R. A. J. Chem. Soc., Perkin Trans. 1 2001, 224-228.
(50) Berkessel, A.; Andreae, M. R. M. Tetrahedron Lett. 2001, 42, 2293-2295.
(51) van Vliet, M. C. A.; Arends, I. W. C. E.; Sheldon, R. A. Synlett 2001,
248-250.
(52) Venturello, C.; Alneri, E.; Ricci, M. J. Org. Chem. 1983, 48, 3831-3833.
(53) Venturello, C.; D’Aloisio J. Org. Chem. 1988, 53, 1553-1557.
(54) Gelbard, G.; Raison, F.; Roditi-Lachter, E.; Thouvenot, R.; Ouahab, L.;
Grandjean, D. J. Mol. Catal. 1996, 114, 77-85.
(55) Quenard, M.; Bonmarin, V.; Gelbard, G. Tetrahedron Lett. 1987, 28, 2237-
2238.
(67) Herrmann, W. A.; Kuhn, F. E.; Mattner, M. R.; Artus, G. R. J.; Geisberger,
M. R.; Correia, J. D. G. J. Organomet. Chem. 1997, 538, 203-209.
(68) Herrmann, W. A.; Kratzer, R. M.; Ding, H.; Thiel, W. R.; Glas, H. J.
Organomet. Chem. 1998, 555, 293-295.
(69) Adolfsson, H.; Converso, A.; Sharpless, K. B. Tetrahedron Lett. 1999, 40,
3991-3994.
(56) Prandi, J.; Kagan, H. B. Tetrahedron Lett. 1986, 27, 2617-2620.
(57) Prat, D.; Lett, R. Tetrahedron Lett. 1986, 27, 707-710.
(58) Prat, D.; Delpech, B.; Lett, R. Tetrahedron Lett. 1986, 27, 711.
(59) Beg, M. A.; Ahmed, I. J. Catalysis 1975, 39, 260-264.
(60) Allan, G. G.; Neogi, A. N. J. Catal. 1970, 16, 197-203.
(61) Ishii, Y.; Sakata, Y. J. Org. Chem. 1990, 55, 5545-5547.
(62) Venturello, C.; D’Aloisio, R.; Bart, J. C. J.; Ricci, M. J. Mol. Catal. 1985,
32, 107-110.
(70) Adolfsson, H.; Cope´ret, C.; Chiang, J. P.; Yudin, A. K. J. Org. Chem.
2000, 65, 8651-8658.
(71) Park, S.-W.; Yoon, S. S. J. Korean Chem. Soc. 2000, 44, 81-83.
(72) Kraus, G. A.; Fulton, B. S. J. Org. Chem. 1985, 50, 1784-1786.
(73) Lane, B. S.; Burgess, K. J. Am. Chem. Soc. 2001, 123, 2933-2934.
(74) Yao, H.; Richardson, D. E. J. Am. Chem. Soc. 2000, 122, 3220-3221.
(75) Frank, W. C. Tetrahedron: Asymmetry 1998, 9, 3745-3749.
(76) Richardson, D. E.; Yao, H.; Frank, K. M.; Bennett, D. A. J. Am. Chem.
Soc. 2000, 122, 1729-1739.
(63) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Noyori, R. J. Org. Chem.
1996, 61, 8310-8311.
(77) Jones, D. P.; Griffith, W. P. J. Chem. Soc., Dalton Trans. 1980, 2526-
(64) Herrmann, W. A.; Fischer, R. W.; Marz, D. W. Angew. Chem., Int. Ed.
1991, 30, 1638-1641.
2532.
(78) Flanagan, J.; Jones, D. P.; Griffith, W. P.; Skapski, A. C.; West, A. P.
Chem. Commun. 1986, 20-21.
(65) Herrmann, W. A.; Fischer, R. W.; Rauch, M. U.; Scherer, W. J. Mol. Catal.
1994, 86, 243-266.
(79) Adam, A.; Mehta, M. Angew. Chem., Int. Ed. 1998, 37, 1387-1388.
(80) McKillop, A.; Sanderson, W. R. J. Chem. Soc., Perkin Trans. 1 2000, 471-
476.
(66) Rudolph, J.; Reddy, K. L.; Chiang, J. P.; Sharpless, K. B. J. Am. Chem.
Soc. 1997, 119, 6189-6190.
9
J. AM. CHEM. SOC. VOL. 124, NO. 40, 2002 11947