Macromolecules, Vol. 38, No. 8, 2005
Semiflexible Liquid Crystalline Tetramers 3311
range of the n-pxp-n family of tetramers and of
analogous copolymers should now be investigated to test
the generality of these observations and to enhance our
understanding of liquid crystalline phase formation and
behavior in polymeric and oligomeric systems.
References and Notes
(
1) Imrie, C. T.; Henderson, P. A. Curr. Opin. Colloid Interface
Sci. 2002, 7, 298.
(
2) Imrie, C. T. Struct. Bonding (Berlin) 1999, 95, 149.
3) Imrie, C. T.; Luckhurst, G. R. In Handbook of Liquid Crystals;
Demus, D., Goodby, J. W., Gray, G. W., Spiess, H. W., Vill,
V., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Vol. 2B, p
801.
(
Figure 6. Dependence of the clearing entropy on the relative
fraction of odd-membered spacers in the ([) copolymers and
(
4) Date, R. W.; Imrie, C. T.; Luckhurst, G. R.; Seddon, J. M.
Liq. Cryst. 1992, 12, 203.
(
b) tetramers.
(
5) Watanabe, J.; Komura, H.; Niori, T. Liq. Cryst. 1993, 13, 455.
6) Watanabe, J.; Niori, T.; Choi, S.-W.; Takanishi, Y.; Takezoe,
H. Jpn. J. Appl. Phys. 1998, 37, L401.
(
spacers is also shown in Figure 5. As seen for the
polymers, the clearing temperature does not show a
linear dependence on the relative fraction of odd-
membered spacers. Instead and as we have seen al-
ready, 5-p6p-5 and 5-p5p-5 exhibit rather similar
clearing temperatures as do 6-p6p-6 and 6-p5p-6,
with the latter showing the higher clearing tempera-
tures. Thus, the tetramers are showing behavior very
similar to that of the polymers. This strongly suggests
that orientationally the four mesogenic units are not
strongly correlated and thus varying the length of the
central spacer does not give rise to the expected pro-
nounced odd-even effect in the clearing temperature.
(
7) Watanabe, J.; Izumi, T.; Niori, T.; Zennyoji, M.; Takanishi,
Y.; Takezoe, H. Mol. Cryst. Liq. Cryst. 2000, 346, 77.
(8) Watanabe, J.; Hayashi, M. Macromolecules 1988, 21, 278.
(
9) Watanabe, J.; Hayashi, M. Macromolecules 1989, 22, 4083.
(
(
(
10) Keller, P. Mol. Cryst. Liq. Cryst. 1985, 123, 247.
11) Furuya, H.; Asahi, K.; Abe, A. Polym. J. 1986, 18, 779.
12) Attard, G. S.; Imrie, C. T. Liq. Cryst. 1989, 6, 387.
(13) Centore, R.; Roviello, A.; Sirigu, A. Mol. Cryst. Liq. Cryst.
1990, 182B, 233.
(
14) Ikeda, T.; Miyamoto, T.; Kurihara, S.; Tsukada, M.; Tazuke,
S. Mol. Cryst. Liq. Cryst. 1990, 182B, 357.
15) Tsvetkov, N. V.; Zuev, V. V.; Tsvetkov, V. N. Liq. Cryst. 1997,
22, 245.
(
(16) Imrie, C. T.; Luckhurst, G. R. J. Mater. Chem. 1998, 8, 1339.
17) Luckhurst, G. R. Macromol. Symp. 1995, 96, 1.
(18) Chen, B.-Q.; Kameyama, A.; Nishikubo, T. Macromolecules
(
A small alternation in clearing temperatures has also
been reported for an incomplete series of tetramers.24
1999, 32, 6485.
It appears, therefore, that the two outer spacers play a
larger role in the odd-even effect seen in the clearing
temperatures than does the central spacer. This sug-
gests that the length and parity of the spacer having
the major compositional fraction determines the transi-
tion temperatures and that the orientational motions
of the four mesogenic units are not strongly correlated
along the length of the tetramer.
(
(
(
19) Nishiyama, I.; Yamamoto, J.; Goodby, J. W.; Yokoyama, H.
J. Mater. Chem. 2003, 13, 2429.
20) Abe, A.; Hiejima, T.; Takeda, T.; Nakufuku, C. Polymer 2003,
44, 3117.
21) Imrie, C. T.; Henderson, P. A.; Seddon, J. M. J. Mater. Chem.,
2004, 14, 2486.
(22) Imrie, C. T.; Stewart, D.; Remy, C.; Christie, D. W.; Hamley,
I. W.; Harding, R. J. Mater. Chem. 1999, 9, 2321.
(23) Henderson, P. A.; Inkster, R. T.; Seddon, J. M.; Imrie, C. T.
J. Mater. Chem. 2001, 11, 2722.
(24) Griffin, A. C.; Sullivan, S. L.; Hughes, W. E. Liq. Cryst. 1989,
The dependence of the clearing entropies for the
tetramers on the relative fraction of odd-membered
spacers is shown in Figure 6. We now have an apparent
linear dependence of the clearing entropy on the relative
fraction of the odd-membered spacer. The corresponding
data for the polymers are also shown in Figure 6,
expressed as the entropy change per repeat unit. The
copolymers also appear to show a linear dependence of
the clearing entropy on composition. The value for the
all-even-membered n ) 6 homopolymer is not included
as the melting and clearing transition peaks could not
be resolved in the DSC trace and the authors also noted
that the rather low molecular weight of the even-
membered polymer may mean that the estimated clear-
ing entropy lay in the molecular weight dependent
4, 677.
(25) Yelamaggad, C. V.; Anitha Nagamani, S.; Hiremath, U. S.;
Shankar Rao, D. S.; Krishna Prasad, S. Liq. Cryst. 2002, 29,
231.
(
26) Sasanuma, Y.; Ono, T.; Kuroda, Y.; Miyazaki, E.; Hikino, K.;
Arou, J.; Nakata, K.; Inaba, H.; Tozaki, K.; Hayashi, H.;
Yamaguchi, K. J. Phys. Chem. B 2004, 108, 13163.
27) Percec, V.; Asami, K.; Tomazos, D.; Feijoo, J. L.; Ungar, G.;
Keller, A. Mol. Cryst. Liq. Cryst. 1991, 205, 67.
(
(
28) Chiellini, E.; Laus, M. In Handbook of Liquid Crystals;
Demus, D., Goodby, J. W., Gray, G. W., Spiess, H. W., Vill,
V., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Vol. 3, p
26.
(
29) Henderson, P. A.; Cook, A. G.; Imrie, C. T. Liq. Cryst. 2004,
31, 1427.
(
30) Ober, C. K.; Jin, J.-I.; Lenz, R. W. In Advances in Polymer
Science; Gordon, M., Ed.; Springer-Verlag: Berlin, 1984; Vol.
59, p 103.
31) Finkelmann, H. In Thermotropic Liquid Crystals; Gray, G.
W., Ed.; Wiley: Chichester, U.K., 1987; Chapter 6.
2
7
regime. The molecular significance of the dependence
of the clearing entropy on spacer lengths for both the
tetramer and polymer is unclear, although it appears
that both types of spacer contribute equally. A wider
(
MA0502304