Inorganic Chemistry
Communication
5992−5995. (d) Wan, M.; Lou, H.; Liu, L. Chem. Commun. 2015, 51,
13953−13956.
We proposed a plausible reaction mechanism based on the
above results (Scheme S3 in the SI). Upon excitation of UiO-
68Se (PS), SET from 1a to PS* occurs with generation of the
radical cation 1a•+ and the radical anion PS•−, which transfer an
electron to O2 with the formation of O2•− and the simultaneous
regeneration of the ground-state PS. Meanwhile, O2•− abstracts a
proton from 1a•+, generating a hydroperoxide free radical and
intermediate 1a•. The latter lose one electron to afford the imine
cation, followed by nucleophile addition to give the product 3a.
With a well understanding of the reaction mechanism, we further
extended the scope of this aerobic CDC reaction photocatalyzed
by the MOF UiO-68Se shown in Table S1 (SI). It can be
observed that various substituted tetrahydroisoquinoline de-
rivatives can undergo aerobic CDC reactions with different
nitroalkanes catalyzed by UiO-68Se under visible light, giving the
coupling products in good-to-excellent yields. Moreover, the
MOF-photocatalyzed CDC reaction can also be expanded to the
direct construction of C−C bonds between N-aryltetrahydroi-
soquinolines with dialkyl malonates and ketones, with
satisfactory yields (Table S2 in the SI).
In summary, we designed and synthesized a simple
benzoselenadiazole-functionalized TPDC ligand. Subsequently,
a noble-metal-free Zr-MOF with a UiO-68 framework was
constructed by the straightforward reaction of ZrCl4 with the
mixed dicarboxylate struts. The robust MOF can act as a highly
efficient and heterogeneous photoredox catalyst for aerobic
CDC reactions between tertiary amines with various carbon
nucleophiles under visible light. It is envisioned that the MOF
can act as an ideal platform, allowing for the incorporation of
more photoredox catalysts.
(3) (a) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem. Res. 2015, 48,
1474−1484. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem.
Rev. 2013, 113, 5322−5363. (c) Narayanam, J. M. R.; Stephenson, C. R.
J. Chem. Soc. Rev. 2011, 40, 102−113. (d) Xuan, J.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2012, 51, 6828−6838. (e) Shi, L.; Xia, W. Chem. Soc. Rev.
2012, 41, 7687−7697.
(4) (a) Wu, C.-J.; Zhong, J.-J.; Meng, Q.-Y.; Lei, T.; Gao, X.-W.; Tung,
C.-H.; Wu, L.-Z. Org. Lett. 2015, 17, 884−887. (b) Zhong, J.-J.; Meng,
Q.-Y.; Wang, G.-X.; Liu, Q.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z.
Chem. - Eur. J. 2013, 19, 6443−6450. (c) Condie, A. G.; Gonzal
́
ez-
Gomez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464−
́
1465. (d) Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen, J.-
R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2011, 50, 7171−7175.
(5) (a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355−360.
(b) Wang, X.-Z.; Meng, Q.-Y.; Zhong, J.-J.; Gao, X.-W.; Lei, T.; Zhao, L.-
M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2015, 51,
11256−11259. (c) Liu, Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung, C.-
H.; Wu, L.-Z. Chem. - Eur. J. 2012, 18, 620−627. (d) Meng, Q.-Y.;
Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng,
K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135,
19052−19055.
(6) (a) Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016,
Mondal, S.; Bhaumik, A.; Zhao, Y. Chem. Commun. 2015, 51, 10746−
10749. (c) Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs,
R. M.; Weirich, T. E.; Mayer, J. Chem. - Eur. J. 2012, 18, 3478−3481.
(d) Wang, J.; Ma, J.; Li, X.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Chem.
Commun. 2014, 50, 14237−14240.
(7) (a) Allendorf, M. D.; Stavila, V. CrystEngComm 2015, 17, 229−246.
(b) Zhou, H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415−5418.
(c) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673−
674.
(8) (a) Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.;
Verpoort, F. Chem. Soc. Rev. 2015, 44, 6804−6849. (b) Xia, W.;
Mahmood, A.; Zou, R.; Xu, Q. Energy Environ. Sci. 2015, 8, 1837−1866.
(c) Cui, Y.; Zhu, F.; Chen, B.; Qian, G. Chem. Commun. 2015, 51, 7420−
7431. (d) He, C.; Liu, D.; Lin, W. Chem. Rev. 2015, 115, 11079−11108.
(9) (a) Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.;
Zhang, M.; Zhang, Q.; Gentle Iii, T.; Bosch, M.; Zhou, H.-C. Chem. Soc.
Rev. 2014, 43, 5561−5593. (b) Zhang, M.; Bosch, M.; Gentle Iii, T.;
Zhou, H.-C. CrystEngComm 2014, 16, 4069−4083.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details, thermogravimetric analysis and
nitrogen sorption of UiO-68Se, and other details (PDF)
(10) (a) Cohen, S. M. Chem. Rev. 2012, 112, 970−1000. (b) Wang, Z.;
Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315−1329.
AUTHOR INFORMATION
Corresponding Author
■
(11) (a) Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J.
T.; Farha, O. K. Chem. Soc. Rev. 2014, 43, 5896−5912. (b) Fei, H.;
Cohen, S. M. J. Am. Chem. Soc. 2015, 137, 2191−2194.
(12) (a) Zhang, T.; Lin, W. Chem. Soc. Rev. 2014, 43, 5982−5993.
(b) Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhang, Y.-Q.; Guo, G. Energy
Environ. Sci. 2014, 7, 2831−2867. (c) Meyer, K.; Ranocchiari, M.; van
Bokhoven, J. A. Energy Environ. Sci. 2015, 8, 1923−1937. (d) Wang, S.;
Wang, X. Small 2015, 11, 3097−3112.
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interest.
(13) (a) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc.
2011, 133, 13445−13454. (b) Yu, X.; Cohen, S. M. Chem. Commun.
2015, 51, 9880−9883. (c) Wu, P.; He, C.; Wang, J.; Peng, X.; Li, X.; An,
Y.; Duan, C. J. Am. Chem. Soc. 2012, 134, 14991−14999. (d) Johnson, J.
A.; Luo, J.; Zhang, X.; Chen, Y.-S.; Morton, M. D.; Echeverría, E.;
Torres, F. E.; Zhang, J. ACS Catal. 2015, 5, 5283−5291. (e) Toyao, T.;
Ueno, N.; Miyahara, K.; Matsui, Y.; Kim, T.-H.; Horiuchi, Y.; Ikeda, H.;
Matsuoka, M. Chem. Commun. 2015, 51, 16103−16106.
(14) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850−13851.
(15) Siu, P. W.; Brown, Z. J.; Farha, O. K.; Hupp, J. T.; Scheidt, K. A.
Chem. Commun. 2013, 49, 10920−10922.
ACKNOWLEDGMENTS
■
We are grateful for financial support from NSFC (Grants
21302072, 51403081, and 21376113), NSF of Jiangsu Province
(Grants BK20130226 and BK20140137), and PAPD of Jiangsu
Higher Education Institutions.
REFERENCES
■
(1) (a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014,
53, 74−100. (b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215−
1292. (c) Scheuermann, C. J. Chem. - Asian J. 2010, 5, 436−451. (d) Li,
C.-J. Acc. Chem. Res. 2009, 42, 335−344.
(2) (a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem.
Soc. 2003, 125, 15312−15313. (b) Li, Z. P.; Li, C. J. J. Am. Chem. Soc.
2005, 127, 3672−3673. (c) Meng, Q.-Y.; Liu, Q.; Zhong, J.-J.; Zhang,
H.-H.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2012, 14,
C
Inorg. Chem. XXXX, XXX, XXX−XXX