Page 5 of 6
ARTICLE
Green Chemistry
Green Chemistry
DOI: 10.1039/C4GC00731J
Experimental Section
3
For examples see (a) A. Corma and P. Serna, Science 2006, 313, 332;
b) J.Li, X.ꢀY. Shi, Y.ꢀY. Bi, J.ꢀF. Wei and Z.ꢀG. Chen, ACS Catal
011, , 657; (c) M. Takasaki, Y. Motoyama, K. Higashi, S. H.
Yoon, I. Mochida and H. Nagashima, Org. Lett. 2008, 10 1601; (d)
F. CárdenasꢀLizana, S. GómezꢀQuero and M. A. Keane, Catal.
Commun. 2008, , 475; (e) Y. Chen, J. Qiu, X. Wang and J. Xiu, J.
Catal. 2006, 242, 227; (f) H. Wua, L. Zhuo, Q. He, X. Liao and B.
Shi, Appl. Catal. A: General, 2009,366 44; (g) J. Wang, Z. Yuan, R.
Nie, Z. Hou and X. Zheng, Ind. Eng. Chem. Res. 2010, 49 4664; (h)
(
.
2
0 mg Co O ꢀNGr/Cꢀcatalyst (2 mol% Co) and 5 mL dry THF
3 4
2
1
were added to oven dried pressure tube (ACE). Then,
corresponding nitro compound (1 mmol), 3.5 mmol (3.5 equiv.)
of HCOOH, 1.4 mmol of Et N (HCOOHꢀEt N (5:2) mixture)
,
3
3
and 100 ꢁL nꢀhexadecane as internal standard were added
sequentially. The pressure tube was flushed with argon, fitted
with screw cap and the reaction was allowed to progress at 100
9
,
0
C for desired time. After completion of the reaction, the
,
reaction mixture was cooled to room temperature and diluted
with ethyl acetate. Then, catalyst was filtered off, and the
sample of the mixture was directly subjected to GC analysis.
Conversion and yields were determined by GCꢀFID (HP6890
with FID detector, column HP530 m x 250 mm x 0.25 ꢁm).
Quantitative and qualitative analysis of anilines were made by
GC, GC–MS analysis. For isolation of anilines, the reactions
were performed without adding nꢀhexadecane. After
completion of the reaction, the catalyst was filtered off, washed
with ethyl acetate and the filtrate containing reaction product
was concentrated. The corresponding aniline was purified by
column chromatography (silica; nꢀhexaneꢀethyl acetate
mixture). The collected fractions were dried over anhydrous
Na SO . Then, solvent was removed in vacuo and finally the
H. U. Blaser, Science 2006, 313, 312; (i) H. U. Blaser, Science 2006,
313, 312. (j) A. Corma, P. Serna, P. Concepcion and J. Calvino, J.
Am. Chem. Soc. 2008, 130, 8748ꢀ8753.
4
(a) J. Suwiski, P. Wagnerand E. M. Holt, Tetrahedron,1996, 52
541; (b) I. Pogorelić, M. FilipanꢀLitvić, S. Merkaš, G.Ljubić, I.
Cepanec and M. Litvić, J. Mole. Catal. A: Chemical, 2007, 274, 202;
c) J. W. Bae, Y. J. Cho, S. H. Lee, C.O. M. Yoon and C. M. Yoon,
Chem. Commun. 2000, 1857; (d) R. J. Rahaim and R. E. Maleczka,
Org. Lett. 2005, , 5087; (e) C. T. Redemann and C. E. Redemann,
Organic Syntheses, 1955, , 69; (f) U. Sharma, P. Kumar, N. Kumar,
,
9
(
7
3
V. Kumar and B. Singh, Adv. Synth. Catal. 2010, 352, 1834; (g)P. S.
Kumbhar, J.SanchezꢀValenteandF. Figueras, Tet. Lett.1998, 2573; (h)
D. Cantillo, M. Baghbanzadeh and C. O. Kappe, Angew. Chem. Int.
Ed. 2012, 51, 10190;
2
4
product was dried.
Conclusions
5
6
7
For recent examples using nanomaterials see: (a) M. B. Gawande, H.
Guo, A.K. Rathi, P. S. Branco, Y. Chen, R.S. Varma and D.ꢀL. Peng,
In conclusion, stable, inexpensive and reusable cobalt oxideꢀ
based nanoꢀmaterials are found to be highly active and selective
catalysts for the chemoꢀselective transfer hydrogenation of
nitroarenes to anilines. The active Co O ꢀNGr/C nanocatalysts
RSC Advances, 2013,
Das, Tetrahedron Lett. 2014, 55, 2912; (c) Z. Li, J. Li, J. Liu, Z.
Zhao, C. Xia and F. Li, ChemCatChem 2014, , 133; (d) E. Kim, H.
3, 1050; (b) N. R. Guha, D. Bhattacherjee, P.
3
4
6
have been prepared by pyrolysis of aminoꢀligated cobalt (II)
acetate on commercial Vulcan XC72R. Excellent chemoꢀ
selectivity was demonstrated applying nitroarenes with olefin,
aldehyde, keto, ester, amide and nitrile functionalities.
S. Jeong, B. M. Kim, Catalysis Communications, 2014 , 45, 25; (e)
P. LaraA. Suarez, V. Colliere, K. Philippot, and B.Chaudret,
ChemCatChem 2014, 6, 87.
Acknowledgements
(a) R. V. Jagadeesh, G. Wienhöfer, F. A. Westerhaus, A.ꢀE. Surkus,
H. Junge, K. Junge and M. Beller, Chem. Eur. J. 2011, 17, 14375;
This work has been supported by the State of Mecklenburgꢀ
Vorpommern, and the BMBF (Bundesministerium für Bildung
und Forschung).
(
b) D. Banerjee, R. V. Jagadeesh, H. Junge, K. Junge and M. Beller,
ChemSusChem 2012, 10, 2039; (c) G. Wienhöfer, K. Schröder, K.
Möller, K. Junge and M. Beller, Adv. Synth. Catal. 2010, 352
615;(d) K. Schröder, S. Enthaler, B. Bitterlich, T. Schulz, A.
Spannenberg, M.ꢀK. Tse, K. Junge and M. Beller, Chem. Eur. J.
009, 15, 5471; (e) F. G. Gelalcha, B. Bitterlich, A. Gopinathan, M.ꢀ
K. Tse and M. Beller, Angew. Chem. Int. Ed. 2007, 46, 7293.
F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M.ꢀM. Pohl, J.
Radnik, A.ꢀE. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A.
Brückner andM. Beller, Nature Chem. 2013, , 537 R. V.
,
1
References
2
1
2
(a) R. S. Downing and P. J. Kunkeler, H. van Bekkum, Catal. Today
997, 37, 121; (b) N. Ono, The Nitro Group in Organic Synthesis
WileyꢀVCH, New York, 2001.
(a)
1
,
5
; (b)
For reviews and books see: (a) H. U. Blaser, U. Siegrist, H. Steiner
Jagadeesh, H. Junge, M.ꢀM. Pohl, J. Radnik, A. Brückner and M.
Beller, J. Am. Chem. Soc. 2013, 135, 10776; (c) D. Banerjee, R. V.
Jagadeesh, K. Junge, M.ꢀM. Pohl, J. Radnik, A. Brückner and M.
Beller, Angew. Chem. Int. Ed. 2014, 53, 4359; (d) R. V. Jagadeesh,
A.ꢀE.Surkus, H. Junge, M.ꢀM. Pohl, J. Radnik, J. Rabeah, H. Huan,
and M. Studer, in Fine Chemicals through Heterogeneous Catalysis
(Eds. R. A. Sheldon, H. van Bekkum), WileyꢀVCH, Weinheim, 2001,
3
89; (b) S. Nishimura, in Handbook of Heterogeneous
Hydrogenation of Organic Synthesis, Wiley, New York, 2001; (c) N.
Ono, in The Nitro Group in Organic Synthesis, WileyꢀVCH, New
York, 2001, 170; (d) N. J. Jebarathinam, M. Eswaramoorthy and V.
Krishnasamy, in Recent Advances in Basic and Applied Aspects of
Industrial Catalysis, (Eds. T. S. R. P. Rao and G. M. Dhar), Elsevier
Science, 1998, 1039. (e) H. U. Blaser, H. Steiner and M. Studer,
V. Schünemann, A. Brückner and M. Beller, Science, 2013, 342
073; (e) R. V. Jagadeesh, G.Wienhöfer, F. A. Westerhaus, A.ꢀE.
Surkus, M.ꢀM. Pohl,H. Junge, K. Junge and M. Beller, Chem.
Commun 2011, 47 10972.
,
1
.
,
8
For reviews on transfer hydrogenations see: (a) S. Gladiali and G.
Mestroni, in Transition Metals for Organic Synthesis, (Eds. M.
Beller, C. Bolm), WileyꢀVCH, Weinheim, 2004; (b) S. Gladiali and
ChemCatChem. 2009,
Chem. 2008, 73, 6867.
1, 210; (f) A. Saha and B. Ranu, J. Org.
4
Green Chem., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012