Inorganic Chemistry
Article
(6) Howard, T. P.; Middelhaufe, S.; Moore, K.; Edner, C.; Kolak, D.
M.; Taylor, G. N.; Parker, D. A.; Lee, R.; Smirnoff, N.; Aves, S. J.;
Love, J. Synthesis of customized petroleum-replica fuel molecules by
targeted modification of free fatty acid pools in Escherichia coli. Proc.
Natl. Acad. Sci. U. S. A. 2013, 110, 7636−7641.
(25) Hayashi, Y.; Yasugi, F.; Arai, M. Role of Cysteine Residues in
the Structure, Stability, and Alkane Producing Activity of
Cyanobacterial Aldehyde Deformylating Oxygenase. PLoS One
2015, 10, e0122217.
(26) McClanahan, S. F.; Dallinger, R. F.; Holler, F. J.; Kincaid, J. R.
Mixed-ligand poly(pyridine) complexes of ruthenium(II). Resonance
Raman spectroscopic evidence for selective population of ligand-
localized 3MLCT excited states. J. Am. Chem. Soc. 1985, 107, 4853−
4860.
́
(7) Kallio, P.; Pasztor, A.; Thiel, K.; Akhtar, M. K.; Jones, P. R. An
engineered pathway for the biosynthesis of renewable propane. Nat.
Commun. 2014, 5, 4731.
(8) Andre, C.; Kim, S. W.; Yu, X.-H.; Shanklin, J. Fusing catalase to
an alkane-producing enzyme maintains enzymatic activity by
converting the inhibitory byproduct H2O2 to the cosubstrate O2.
Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 3191−3196.
(27) Deronzier, A.; Meyer, T. J. Photoinduced reduction of tris(2,2′-
bipyridine)ruthenium(2+) by some dithio anions. Inorg. Chem. 1980,
19, 2912−2917.
(9) Das, D.; Eser, B. E.; Han, J.; Sciore, A.; Marsh, E. N. G. Oxygen-
Independent Decarbonylation of Aldehydes by Cyanobacterial
Aldehyde Decarbonylase: A New Reaction of Diiron Enzymes.
Angew. Chem., Int. Ed. 2011, 50, 7148−7152.
(10) Rajakovich, L. J.; Nørgaard, H.; Warui, D. M.; Chang, W.-c.; Li,
N.; Booker, S. J.; Krebs, C.; Bollinger, J. M.; Pandelia, M.-E. Rapid
Reduction of the Diferric-Peroxyhemiacetal Intermediate in Alde-
hyde-Deformylating Oxygenase by a Cyanobacterial Ferredoxin:
Evidence for a Free-Radical Mechanism. J. Am. Chem. Soc. 2015,
137, 11695−11709.
(11) Buer, B. C.; Paul, B.; Das, D.; Stuckey, J. A.; Marsh, E. N. G.
Insights into Substrate and Metal Binding from the Crystal Structure
of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate
Bound. ACS Chem. Biol. 2014, 9, 2584−2593.
(12) Wang, C.; Zhao, C.; Hu, L.; Chen, H. Calculated Mechanism of
Cyanobacterial Aldehyde-Deformylating Oxygenase: Asymmetric
Aldehyde Activation by a Symmetric Diiron Cofactor. J. Phys.
Chem. Lett. 2016, 7, 4427−4432.
(28) Balzani, V.; Bolletta, F.; Gandolfi, M. T.; Maestri, M.
Bimolecular electron transfer reactions of the excited states of
transition metal complexes. Top. Curr. Chem. 1978, 75, 1−64.
(29) Waugh, M. W.; Marsh, E. N. G. Solvent Isotope Effects on
Alkane Formation by Cyanobacterial Aldehyde Deformylating
Oxygenase and Their Mechanistic Implications. Biochemistry 2014,
53, 5537−5543.
(30) Khara, B.; Menon, N.; Levy, C.; Mansell, D.; Das, D.; Marsh, E.
N. G.; Leys, D.; Scrutton, N. S. Production of Propane and Other
Short-Chain Alkanes by Structure-Based Engineering of Ligand
Specificity in Aldehyde-Deformylating Oxygenase. ChemBioChem
2013, 14, 1204−1208.
(31) Nilsson, T. Photoinduced electron transfer from tris(2,2′-
bipyridyl)ruthenium to cytochrome c oxidase. Proc. Natl. Acad. Sci. U.
S. A. 1992, 89, 6497−6501.
(32) Aukema, K. G.; Makris, T. M.; Stoian, S. A.; Richman, J. E.;
Munck, E.; Lipscomb, J. D.; Wackett, L. P. Cyanobacterial Aldehyde
̈
Deformylase Oxygenation of Aldehydes Yields n − 1 Aldehydes and
Alcohols in Addition to Alkanes. ACS Catal. 2013, 3, 2228−2238.
(33) Zhang, X.; Rodgers, M. A. J. Energy and Electron Transfer
Reactions of the MLCT State of Ruthenium Tris(bipyridyl) with
Molecular Oxygen: A Laser Flash Photolysis Study. J. Phys. Chem.
1995, 99, 12797−12803.
(13) Giese, B.; Wang, M.; Gao, J.; Stoltz, M.; Muller, P.; Graber, M.
Electron relay race in peptides. J. Org. Chem. 2009, 74, 3621−3625.
(14) Warren, J. J.; Ener, M. E.; Vlcek, A., Jr.; Winkler, J. R.; Gray, H.
B. Electron hopping through proteins. Coord. Chem. Rev. 2012, 256,
2478−2487.
(15) Paul, B.; Das, D.; Ellington, B.; Marsh, E. N. G. Probing the
Mechanism of Cyanobacterial Aldehyde Decarbonylase Using a
Cyclopropyl Aldehyde. J. Am. Chem. Soc. 2013, 135, 5234−5237.
(16) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Mixed phosphine
2,2′-bipyridine complexes of ruthenium. Inorg. Chem. 1978, 17,
3334−3341.
(34) Das, D.; Ellington, B.; Paul, B.; Marsh, E. N. G. Mechanistic
Insights from Reaction of α-Oxiranyl-Aldehydes with Cyanobacterial
Aldehyde Deformylating Oxygenase. ACS Chem. Biol. 2014, 9, 570−
577.
(35) Park, A. K.; Kim, I.-S.; Jeon, B. W.; Roh, S. J.; Ryu, M.-Y.; Baek,
H.-R.; Jo, S.-W.; Kim, Y.-S.; Park, H.; Lee, J. H.; Yoon, H.-S.; Kim, H.-
W. Crystal structures of aldehyde deformylating oxygenase from
Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011. Biochem.
Biophys. Res. Commun. 2016, 477, 395−400.
(36) Gray, H. B.; Winkler, J. R. Hole hopping through tyrosine/
tryptophan chains protects proteins from oxidative damage. Proc. Natl.
Acad. Sci. U. S. A. 2015, 112, 10920−10925.
(37) Minnihan, E. C.; Nocera, D. G.; Stubbe, J. Reversible, Long-
Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase.
Acc. Chem. Res. 2013, 46, 2524−2535.
(38) Ravichandran, K. R.; Taguchi, A. T.; Wei, Y.; Tommos, C.;
Nocera, D. G.; Stubbe, J. A > 200 meV Uphill Thermodynamic
Landscape for Radical Transport in Escherichia coli Ribonucleotide
Reductase Determined Using Fluorotyrosine-Substituted Enzymes. J.
Am. Chem. Soc. 2016, 138, 13706−13716.
(17) Berg, K.; Tran, A.; Raymond, M.; Abrahamsson, M.; Wolny, J.;
̈
Redon, S.; Andersson, M.; Sun, L.; Styring, S.; Hammarstrom, L.;
Toftlund, H.; Åkermark, B. Covalently Linked Ruthenium(II)-
Manganese(II) Complexes: Distance Dependence of Quenching
and Electron Transfer. Eur. J. Inorg. Chem. 2001, 2001, 1019−1029.
(19) Jia, C.; Li, M.; Li, J.; Zhang, J.; Zhang, H.; Cao, P.; Pan, X.; Lu,
X.; Chang, W. Structural insights into the catalytic mechanism of
aldehyde-deformylating oxygenases. Protein Cell 2015, 6, 55−67.
(20) Berglund, J.; Pascher, T.; Winkler, J. R.; Gray, H. B.
Photoinduced Oxidation of Horseradish Peroxidase. J. Am. Chem.
Soc. 1997, 119, 2464−2469.
(21) Bjerrum, M. J.; Casimiro, D. R.; Chang, I. J.; Di Bilio, A. J.;
Gray, H. B.; Hill, M. G.; Langen, R.; Mines, G. A.; Skov, L. K.;
Winkler, J. R.; Wuttke, D. S. Electron transfer in ruthenium-modified
proteins. J. Bioenerg. Biomembr. 1995, 27, 295−302.
(22) Tran, N.-H.; Nguyen, D.; Dwaraknath, S.; Mahadevan, S.;
Chavez, G.; Nguyen, A.; Dao, T.; Mullen, S.; Nguyen, T.-A.;
Cheruzel, L. E. An Efficient Light-Driven P450 BM3 Biocatalyst. J.
Am. Chem. Soc. 2013, 135, 14484−14487.
(23) Tran, N.-H.; Huynh, N.; Bui, T.; Nguyen, Y.; Huynh, P.;
Cooper, M. E.; Cheruzel, L. E. Light-initiated hydroxylation of lauric
acid using hybrid P450 BM3 enzymes. Chem. Commun. 2011, 47,
11936−11938.
(24) Tran, N.-H.; Huynh, N.; Chavez, G.; Nguyen, A.; Dwaraknath,
S.; Nguyen, T.-A.; Nguyen, M.; Cheruzel, L. A series of hybrid P450
BM3 enzymes with different catalytic activity in the light-initiated
hydroxylation of lauric acid. J. Inorg. Biochem. 2012, 115, 50−56.
(39) Ravichandran, K. R.; Zong, A. B.; Taguchi, A. T.; Nocera, D.
G.; Stubbe, J.; Tommos, C. Formal Reduction Potentials of
Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining
the Thermodynamics of Multistep Radical Transfer. J. Am. Chem. Soc.
2017, 139, 2994−3004.
(40) Gray, H. B.; Winkler, J. R. Electron tunneling through proteins.
Q. Rev. Biophys. 1999, 36, 341−372.
(41) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry of
Proton-Coupled Electron Transfer Reagents and its Implications.
Chem. Rev. 2010, 110, 6961−7001.
(42) Xue, G.; Wang, D.; De Hont, R.; Fiedler, A. T.; Shan, X.;
Mu
̈
nck, E.; Que, L. A synthetic precedent for the [FeIV2(μ-O)2]
diamond core proposed for methane monooxygenase intermediate Q.
Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 20713−20718.
F
Inorg. Chem. XXXX, XXX, XXX−XXX