ORGANIC
LETTERS
2007
Vol. 9, No. 4
587-589
Ru-Catalyzed Intermolecular [3
Cycloaddition of -Unsaturated
Ketones with Silylacetylenes and
Carbon Monoxide Leading to -Pyrones
+2+1]
r,â
r
Takahide Fukuyama,* Yuki Higashibeppu, Ryo Yamaura, and Ilhyong Ryu*
Department of Chemistry, Graduate School of Science, Osaka Prefecture UniVersity,
Sakai, Osaka 599-8531, Japan
Received November 18, 2006
ABSTRACT
Ruthenium catalyzes a carbonylative [3
+
2+
1] cycloaddition, using silylacetylenes,
r,
â
-unsaturated ketones, and CO as the starting materials,
providing the new method for the synthesis of tetrasubstituted
r
-pyrones. In this reaction, the carbonyl group and -carbon of vinyl ketones
r
are incorporated as a three-atom assembling unit.
R-Pyrones are useful as intermediates in the synthesis of a
variety of important hetero- and carbocyclic molecules and
can be found in numerous biologically active natural products
as substructures.1 Transition-metal-catalyzed cycloaddition,
using carbon monoxide as a one-carbon unit, is one of the
most powerful tools available for the construction of various
carbonyl-containing cyclic and heterocyclic compounds,2
however, analogous approaches leading to R-pyrones are
scarce.3,4 A few catalytic systems for the synthesis of
R-pyrones based on the carbonylation have been developed.
These include the carbonylation of cyclopropenyl esters or
ketones,3a 2-iodoallyl-1,3-dicarbonyl compounds,3b and pro-
pargyl halides or propargyl alcohol.3c In these methods,
however, only a limited range of substrates can be tolerated.
We recently reported on the ruthenium-catalyzed [2+2+1+1]-
type cycloaddition of alkynes, electron-deficient alkenes, and
two molecules of CO, to give hydroquinones in good yields
(Scheme 1, first equation).5 During the course of our
investigation, when silylacetylenes were used as an alkyne,
we found that no such cycloaddition took place but R-pyrones
were formed as the major products. Herein, we report on
(1) (a) Kvita, V.; Fischer, W. Chimia 1993, 47, 3. (b) West, F. G.; Chase,
C. E.; Anif, A. M. J. Org. Chem. 1993, 58, 3794. (c) Posner, G. H.; Lee,
J. K.; White, M. C.; Hutchings, R. H.; Dai, H.; Kachinski, J. L.; Dolan, P.;
Kensler, T. W. J. Org. Chem. 1997, 62, 3299. (d) Schlingmann, G.; Milne,
L.; Carter, G. T. Tetrahedron 1998, 54, 13013. (e) Barrero, A. F.; Oltra, J.
E.; Herrador, M. M.; Sanchez, J. F.; Quilez, J. F.; Rojas, F. J.; Reyes, J. F.
Tetrahedron 1993, 49, 141.
(2) (a) Schore, N. E. Chem. ReV. 1988, 88, 1081. (b) Lautens, M.; Klute,
W.; Tam, W. Chem. ReV. 1996, 96, 49. (c) Ojima, I.; Tzamarioudaki, M.;
Li, Z.; Donovan, R. D. Chem. ReV. 1996, 96, 635. (d) Fru¨hauf, H.-W. Chem.
ReV. 1997, 97, 523.
(3) (a) Cho, S. H.; Liebeskind, L. S. J. Org. Chem. 1987, 52, 2631. (b)
Shimoyama, I.; Zhang, Y.; Wu, G.; Negishi, E. Tetrahedron Lett. 1990,
31, 2841. (c) Rosas, N.; Salmon, M.; Sharma, P.; Alvarez, C.; Ramirez,
R.; Garcia, J.-L.; Arzoumanian, H. J. Chem. Soc., Perkin Trans. 1 2000,
1493.
(4) (a) Larock, R. C.; Han, X.; Doty, M. J. Tetrahedron Lett. 1998, 39,
5713. (b) Larock, R. C.; Doty, M. J.; Han, X. J. Org. Chem. 1999, 64,
8770. (c) Kotora, M.; Ishikawa, M.; Tsai, F.-Y. Takahashi, T. Tetrahedron
1999, 55, 4969. (d) Rousset, S.; Abarbri, M.; Thibonnet, J.; Ducheˆne, A.;
Parrain, J.-L. Chem. Commun. 2000, 1987. (e) Yao, T.; Larock, R. C. J.
Org. Chem. 2003, 68, 5936. (f) Cherry, K.; Parrain, J.-K.; Thibonnet, J.;
Ducheˆne, A.; Abarbri, M. J. Org. Chem. 2005, 70, 6669. For [2+2+2]
cycloaddition using carbon dioxide, see: (g) Tsuda, T.; Morikawa, S.;
Saegusa, T. J. Org. Chem. 1988, 53, 3140. (h) Tsuda, T.; Morikawa, S.;
Hasegawa, N.; Saegusa, T. J. Org. Chem. 1990, 55, 2978. (i) Louie, J.;
Gibby, J. E.; Farnworth, M. V.; Tekavec, T. N. J. Am. Chem. Soc. 2002,
124, 15188.
(5) (a) Fukuyama, T.; Yamaura, R.; Higashibeppu, Y.; Okamura, T.; Ryu,
I.; Kondo, T.; Mitsudo, T. Org. Lett. 2005, 7, 5781. For earlier work, see:
(b) Suzuki, N.; Kondo, T.; Mitsudo, T. Organometallics 1998, 17, 766.
10.1021/ol062807n CCC: $37.00
© 2007 American Chemical Society
Published on Web 01/23/2007