3
Scheme 2. Gram scale preparation of quinoline.
Scheme 3. The effect of radical scavengers. Reaction conditions: 2-
nitrobenzyl alcohol (0.5 mmol), radical scavenger (0.5 mmol), 2a (1.0
mmol), t-BuOK (1.0 mmol), H2O (3 mL), 120 oC, 24 h, under Ar.
Scheme 5. Proposed reaction mechanism.
University (IRT_14R33), the 111 project (B14041), Shaanxi
Provincial Natural Science Foundation (2014JQ2048), the
Fundamental Research Funds for the Central Universities
(GK261001316, GK261001329, GK261001095), the Program for
Key Science and Technology Innovative Team of Shaanxi
Province (2012KCT-21 and 2013KCT-17), and the Scientific
Research Foundation for the Returned Overseas Chinese
Scholars, State Education Ministry.
Scheme 4. Intramolecular vs intermolecular hydrogen transfer.
of bases.12e Thus, we carried out an experiment in the absence of
ketone substrate under standard conditions to see if the key
intermediate 2-aminobenzaldehyde could be isolated. 2-
nitrobenzalcohol was converted to 2-aminobenzoic acid instead
of 2-aminobenzaldehyde in 56% yield with 2 equivalents of t-
BuOK in water at 120 oC for 24 h under Ar atmosphere (Scheme
4). The formation of 2-aminobenzoic acid might result from the
Cannizzaro reaction of 2-aminobenzaldehyde intermediate,
which may be formed by intramolecular hydrogen transfer
mediated by the base (Scheme 5, from 1 to 5). Subjecting 5 to the
standard conditions, no reaction took place, indicating 5 is not an
intermediate for quinoline formation but rather a by-product.
Interestingly, little intermolecular reaction took place between
nitrobenzene and benzyl alcohol under standard conditions for 24
h (Scheme 4), indicating that the reduction process is initiated by
an intramolecular hydrogen transfer process. In the presence of a
ketone substrate, the 2-aminobenzaldehyde intermediate will
undergo an aldol reaction with the ketone substrate under basic
conditions followed by cyclisation to form the quinoline product
(Scheme 5).9d,9k,9m,14
References and notes
1. (a) Michael, J. P. Natural Product Reports 2008, 25, 166; (b) Kaur,
K.; Jain, M.; Reddy, R. P.; Jain, R. Eur. J. Med. Chem. 2010, 45,
3245; (c) Vandekerckhove, S.; D’hooghe, M. Bioorg. Med. Chem.
2015, 23, 5098; (d) Fitch, C. D. Life Sci. 2004, 74, 1957.
2. Wang, Z. In Comprehensive Organic Name Reactions and
Reagents; John Wiley & Sons, Inc.: 2010.
3. Yamashkin, S.; Oreshkina, E. Chem. Heterocycl. Compd. 2006, 42,
701.
4. Li, J. In Name Reactions; Springer Berlin Heidelberg: 2009, p 263.
5. (a) Cheng, C. C.; Yan, S. J. In Organic Reactions; John Wiley &
Sons, Inc.: 2004; (b) Li, J. In Name Reactions; Springer Berlin
Heidelberg: 2009, p 238; (c) Wu, J.; Xia, H. G.; Gao, K. Org.
Biomol. Chem. 2006, 4, 126.
6. (a) Barluenga, J.; Rodríguez, F.; Fañanás, F. J. Chem. Asian J.
2009, 4, 1036; (b) Prajapati, S. M.; Patel, K. D.; Vekariya, R. H.;
Panchal, S. N.; Patel, H. D. RSC Adv. 2014, 4, 24463.
7. Thummel, R. P. In Encyclopedia of Reagents for Organic
Synthesis; John Wiley & Sons: 2001.
In conclusion,
a transition-metal-free protocol for the
8. (a) Li, A. H.; Ahmed, E.; Chen, X.; Cox, M.; Crew, A. P.; Dong,
H. Q.; Jin, M.; Ma, L.; Panicker, B.; Siu, K. W.; Steinig, A. G.;
Stolz, K. M.; Tavares, P. A. R.; Volk, B.; Weng, Q.; Werner, D.;
Mulvihill, M. J. Org. Biomol. Chem. 2007, 5, 61; (b) Li, A. H.;
Beard, D. J.; Coate, H.; Honda, A.; Kadalbajoo, M.; Kleinberg, A.;
Laufer, R.; Mulvihill, K. M.; Nigro, A.; Rastogi, P.; Sherman, D.;
Siu, K. W.; Steinig, A. G.; Wang, T.; Werner, D.; Crew, A. P.;
Mulvihill, M. J. Synthesis 2010, 2010, 1678.
synthesis of quinolines starting from cheap and stable 2-
nitrobenzyl alcohol with water as solvent has been developed.
The reaction is initiated by an intramolecular hydrogen transfer
process promoted by a base. This protocol provides a simple
approach for the preparation of synthetically important
quinolines.
9. (a) Cho, C. S.; Kim, B. T.; Kim, T. J.; Shim, S. C. Chem. Commun.
2001, 2576; (b) Martínez, R.; Brand, G. J.; Ramón, D. J.; Yus, M.
Tetrahedron Lett. 2005, 46, 3683; (c) Martínez, R.; Ramón, D. J.;
Yus, M. Tetrahedron 2006, 62, 8988; (d) Martínez, R.; Ramón, D.
J.; Yus, M. Eur. J. Org. Chem. 2007, 2007, 1599; (e) Vander
Mierde, H.; Van Der Voort, P.; De Vos, D.; Verpoort, F. Eur. J.
Org. Chem. 2008, 2008, 1625; (f) Cho, C. S.; Ren, W. X.; Shim, S.
C. Bull. Korean Chem.Soc 2005, 26, 1286; (g) Cho, C. S.; Ren, W.
X. J. Organomet. Chem. 2007, 692, 4182; (h) Taguchi, K.;
Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2005, 46, 4539; (i) Cho,
C. S.; Ren, W. X.; Yoon, N. S. J. Mol. Catal. A: Chem. 2009, 299,
Acknowledgments
We are grateful for the financial support of the National
Natural Science Foundation of China (21473109), the Program
for Changjiang Scholars and Innovative Research Team in