1230
P. Bizouard et al.
Cluster
Synlett
equivalents of Cs2CO3 as a base, with 1.0 equivalents of CuI,
arylation at C2 of N-methylimidazole was favored, and the
use of bromoarene 2a selectively led to 10b in 77% yield.
Again, for imidazoles the supported system compared well
with the best homogeneous palladium catalyst. We previ-
ously reported postcatalysis studies for this Pd@PPy sys-
tem, which suggested releasing of molecular or colloidal
soluble active species, delivered by the nanocomposite and
susceptible to back redeposition and recycling.5 To further
scrutinize this hypothesis we achieved here inductively
coupled plasma atomic emission spectroscopy (ICP-AES)
analysis of the filtrate after synthesis of 3a (Scheme 2). A
residual amount of palladium of 260 ppm which corre-
sponds to 2.7% palladium leaching was detected. In com-
parison to fully insoluble heterogeneous systems (<10
ppm),13 this amount is consistent with our first hypothesis.
References and Notes
(1) (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
(b) Parisien, M.; Valette, D.; Fagnou, K. J. Org. Chem. 2005, 70,
7578. (c) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007,
107, 174. (d) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200.
(e) Kakiuchi, F. Synthesis 2008, 3013. (f) Bellina, F.; Rossi, R. Tet-
rahedron 2009, 65, 10269. (g) Ackermann, L.; Vicente, R.; Kapdi,
A. R. Angew. Chem. Int. Ed. 2009, 48, 9792. (h) Chen, X.; Engle, K.
M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094.
(i) Roger, J.; Gottumukkala, A. L.; Doucet, H. ChemCatChem 2010,
2, 20. (j) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem.
Int. Ed. 2012, 51, 8960. (k) Wencel-Delord, J.; Glorius, F. Nat.
Chem. 2013, 5, 369. (l) Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C.
Adv. Synth. Catal. 2014, 356, 17.
(2) (a) Battace, A.; Lemhadri, M.; Zair, T.; Doucet, H.; Santelli, M.
Organometallics 2007, 26, 472. (b) Fall, Y.; Doucet, H.; Santelli,
M. ChemSusChem 2009, 2, 153. (c) Roy, D.; Mom, S.; Beaupérin,
M.; Doucet, H.; Hierso, J.-C. Angew. Chem. Int. Ed. 2010, 49, 6650.
(d) Roy, D.; Mom, S.; Lucas, D.; Cattey, H.; Hierso, J.-C.; Doucet,
H. Chem. Eur. J. 2011, 17, 6453. For selected examples of Pd-cat-
alyzed pyrrole and imidazole arylations on C2 or C5 with
haloarenes, see: (e) Pivas-Art, S.; Satoh, T.; Kawamura, Y.;
Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467.
(f) Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213. (g) Bellina, F.;
Calandri, C.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63,
1970. (h) Storr, T. E.; Firth, A. G.; Wilson, K.; Darley, K.;
Baumann, C. G.; Fairlamb, I. J. S. Tetrahedron 2008, 64, 6125.
(i) Jafarpour, F.; Rahiminejadan, S.; Hazrati, H. J. Org. Chem.
2010, 75, 3109. (j) Shibahara, F.; Yamaguchi, E.; Murai, T. Chem.
Commun. 2010, 46, 2471. (k) Zhao, L.; Bruneau, C.; Doucet, H.
ChemCatChem 2013, 5, 255. (l) Bellina, F.; Guazzelli, N.; Lessi,
M.; Manzini, C. Tetrahedron 2015, 71, 2298.
(3) Djakovitch, L.; Felpin, F.-X. ChemCatChem 2014, 6, 2175.
(4) Vasilyeva, S. V.; Vorotyntsev, M. A.; Bezverkhyy, I.; Lesniewska,
E.; Heintz, O.; Chassagnon, R. J. Phys. Chem. C 2008, 112, 19878.
(5) Zinovyeva, V. A.; Vorotyntsev, M. A.; Bezverkhyy, I.; Chaumont,
D.; Hierso, J.-C. Adv. Funct. Mater. 2011, 21, 1064.
(6) (a) Magdesieva, T. V.; Nikitin, O. M.; Levitsky, O. A.; Zinovyeva,
V. A.; Bezverkhyy, I.; Zolotukhina, E. V.; Vorotyntsev, M. A. J.
Mol. Catal. A: Chem. 2012, 50, 353. (b) Magdesieva, T. V.; Nikitin,
O. M.; Zolotukhina, E. V.; Zinovyeva, V. A.; Vorotyntsev, M. A.
Mendeleev Commun. 2012, 22, 305. (c) Magdesieva, T. V.;
Nikitin, O. M.; Zolotukhina, E. V.; Vorotyntsev, M. A. Electro-
chim. Acta 2014, 122, 289.
(7) Reay, A. J.; Fairlamb, I. J. S. Chem. Commun. 2015, 51, 16289.
(8) Reported pKa for thiophenes and furans are C5 (or C2)–H = 33–
36, and pKa of C5 (or C2)–H for pyrroles and indoles are in the
cles/Essentials1-2009.pdf.
(9) Roger, J.; Doucet, H. Adv. Synth. Catal. 2009, 351, 1977.
(10) Improved isolated yields can be accessed for synthetic scales
higher than 1.0 mmol. Recycling experiments were limited due
to fractional material loss by paper filtration.
N
N
H
COMe
N
N
H
A: 62%a
D: 67%
E: 77%
D: 77%
MeOC
10b
10a
N
N
OMe
Me
N
N
H
H
A: 92%
D: 93%
A: 76%
D: 90%
11a
12a
Figure 2 C5- and C2-arylated imidazoles 10a,b, 11a, and 12a from
bromoarenes coupled with 9. Reagents and conditions: imidazole (2.0
equiv), bromoarene (1.0 equiv), DMAc (2.5 ml), 150 °C, 17 h; condi-
tions A: Pd@PPy (2.0 mol%), KOAc (2 equiv); conditions D: Pd(OAc)2
(0.5 mol%), KOAc (2.0 equiv); conditions E: Pd@PPy (2.0 mol%), CuI (1.0
equiv), Cs2CO3 (2.0 equiv). a NMR and GC yields.
In summary, palladium nanoparticles of 2 nm size,
highly dispersed on polypyrrole support (35 Pd wt%), pro-
vided an efficient system for the selective direct arylation
of substituted pyrroles and imidazoles by using unactivated
aryl bromides functionalized in para, meta, and ortho posi-
tions.14–16 These performances matches the best homoge-
neous systems known to date. Further works are focused at
improving the recyclability of this recoverable system via
anchoring of Pd@PPy nanocomposite.
Acknowledgment
This work was supported by the Université de Bourgogne (MESR PhD
grant for CT), the Région Bourgogne (PARI II program) and the CNRS
(3MIM-P4 program). We are thankful for support from the Institut
Universitaire de France IUF (JCH).
(11) Bellina, F.; Cauteruccio, S.; Di Fiore, A.; Marchetti, C.; Rossi, R.
Tetrahedron 2008, 64, 6060; see also ref. 2l.
(12) Smari, I.; Youssef, C.; Ben Ammar, H.; Ben Hassine, B.; Soulé, J.-
F.; Doucet, H. Tetrahedron 2015, 71, 6586.
Supporting Information
(13) (a) Beaupérin, M.; Smaliy, R.; Cattey, H.; Meunier, P.; Ou, J.; Toy,
P. H.; Hierso, J.-C. Chem. Commun. 2014, 50, 9505. (b) Beaupérin,
M.; Smaliy, R.; Cattey, H.; Meunier, P.; Ou, J.; Toy, P. H.; Hierso,
J.-C. ChemPlusChem 2015, 80, 119.
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, 1227–1231