Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 4
COMMUNICATION
Journal Name
A. Kumar, S. Bawa, K. Ganorkar, S. K. Ghosh and A.
DOI: 10.1039/D0CC05823H
K. Y. Zhang, S. Liu, Q. Zhao and W. Huang, Coord. Chem. Rev.,
5
6
7
8
9
1
To further gain the details of the mechanism, the porosity
of the polymer was measured using Brunauer–Emmett–Teller
Bandyopadhyay, Inorg. Chem., 2020, 59, 1746-1757.
2
-1
(
BET) isotherm, which showed a surface area of 91.19 m g
2
016, 319, 180-195.
3
-1
with 0.14 cm g pore volume (Fig. S18, ESI). This suggests that
the catalytic reactions are taking place at the catalytic sites
along the pore surfaces of the Cu-tetracatechol catalyst. The
mechanism for the borylation reaction is given in the earlier
literature reports.32 This includes the role of amine added to in
situ deprotonate nucleophilic water-boron adduct and form
I. Cobo, M. Li, B. S. Sumerlin and S. Perrier, Nat. Mater.,
2015, 14, 143-159.
K. C. Bentz and S. M. Cohen, Angew. Chem. Int. Ed., 2018, 57,
1
4992-15001.
M. A. Rahim, S. L. Kristufek, S. Pan, J. J. Richardson and F.
Caruso, Angew. Chem. Int. Ed., 2019, 58, 1904-1927.
0 T. Ling, J.-J. Wang, H. Zhang, S.-T. Song, Y.-Z. Zhou, J. Zhao
and X.-W. Du, Adv. Mater., 2015, 27, 5396-5402.
11 S. Joshi, H. Kathuria, S. Verma and S. Valiyaveettil, ACS Appl.
Mater. Interfaces, 2020, 12, 19044-19053.
2
3
activated sp -sp diboron which transmetalate with copper
3
2
and undergoes the boryl conjugate addition.
1
1
1
1
1
2 S. J. Kraft, R. H. Sánchez and A. S. Hock, ACS Catal., 2013, 3,
26-830.
3 R. O. Rocha, M. O. Rodrigues and B. A. D. Neto, ACS Omega,
020, 5, 972-979.
4 L. Reguera and D. G. Rivera, Chem. Rev., 2019, 119, 9836-
860.
5 L. Rout, A. Kumar, P. K. Chand, L. S. K. Achary and P. Dash,
ChemistrySelect, 2019, 4, 5696-5706.
6 D. Paprocki, A. Madej, D. Koszelewski, A. Brodzka and R.
Ostaszewski, Front. Chem., 2018, 6.
8
2
9
Fig. 3 Cyclic voltammetry for tetracatechol ligand (A) and polymer (B) in DMSO.
17 L. Liang and D. Astruc, Coord. Chem. Rev., 2011, 255, 2933-
2
945.
1
1
8 J. W. Fyfe and A. J. Watson, Chem, 2017, 3, 31-55.
In conclusion, we synthesized and characterised Cu-
tetracatechol polymer and investigated its properties. The
9 M. Arslan, G. Acik and M. A. Tasdelen, Polym. Chem., 2019,
1
0, 3806-3821.
optical spectra indicate strong charge transfer from catechol 20 F. L. Thorp-Greenwood, T. K. Ronson and M. J. Hardie, Chem.
Sci., 2015, 6, 5779-5792.
1 X. Huang, S. Zhang, L. Liu, L. Yu, G. Chen, W. Xu and D. Zhu,
Angew. Chem. Int. Ed., 2018, 57, 146-150.
2 J. Liu, Y. Zhou, Z. Xie, Y. Li, Y. Liu, J. Sun, Y. Ma, O. Terasaki
and L. Chen, Angew. Chem. Int. Ed., 2020, 59, 1081-1086.
ligand to the Cu-metal centres along the polymer backbone.
The band gap of polymer (1.01 eV) and pure ligand (2.11 eV)
was calculated from the reduction and oxidation potentials
obtained from the CV measurements. The BET analysis gave a
2
2
2
-1
3 -1
surface area of 91.19 m g and 0.14 cm g pore volume for 23 D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade,
C. K. Brozek, A. Aspuru-Guzik and M. Dincă, J. Am. Chem.
Soc., 2014, 136, 8859-8862.
4 B. F. Abrahams, T. A. Hudson, L. J. McCormick and R. Robson,
Cryst. Growth Des., 2011, 11, 2717-2720.
the polymer. The synthesized Cu-tetracatechol polymer was
used as a catalyst for three component click reaction and
borylation of unsaturated carbonyl compounds. In both cases,
a maximum (>99 %) conversion efficiency of reactant into
product was observed in repeated cycles indicating a high
catalytic turnover efficiency of the polymer. The catalyst is
eco-friendly, easy to synthesize, recyclable and showed wide
applicability. Such low cost tendering catalysts are useful and
needed in many water based organic transformations.
2
2
2
2
5 D. Herebian, E. Bothe, F. Neese, T. Weyhermüller and K.
Wieghardt, J. Am. Chem. Soc., 2003, 125, 9116-9128.
6 M. J. Sever and J. J. Wilker, Dalton Trans., 2004, 7, 1061-
1
072.
7 W. J. Barreto, R. A. Ando, P. S. Santos and W. P. Silva,
Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 68, 612-
6
18.
We gratefully acknowledge funding support from the 28 P. Karthik, R. Vinoth, P. Selvam, E. Balaraman, M.
Navaneethan, Y. Hayakawa and B. Neppolian, J. Mater.
Chem. A, 2017, 5, 384-396.
National University of Singapore under the IITK-NUS joint
degree program. Sandeep Verma thanks SERB for JC Bose
Fellowship.
2
3
3
9 Y. M. A. Yamada, S. M. Sarkar and Y. Uozumi, J. Am. Chem.
Soc., 2012, 134, 9285-9290.
0 C. Deraedt, N. Pinaud and D. Astruc, J. Am. Chem. Soc., 2014,
1
36, 12092-12098.
Conflicts of interest
1 L. Bahsis, H. Ben El Ayouchia, H. Anane, A. Pascual-Álvarez,
G. De Munno, M. Julve and S.-E. Stiriba, Appl. Organomet.
Chem., 2019, 33, e4669.
“There are no conflicts to declare”.
3
3
2 S. B. Thorpe, J. A. Calderone and W. L. Santos, Org. Lett.,
Notes and references
2
012, 14, 1918-1921.
1
2
3
4
G. R. Whittell, M. D. Hager, U. S. Schubert and I. Manners,
Nat. Mater., 2011, 10, 176-188.
3 C.-H. Chang, A.-C. Li, I. Popovs, W. Kaveevivitchai, J.-L. Chen,
K.-C. Chou, T.-S. Kuo and T.-H. Chen, J. Mater. Chem. A, 2019,
Y. Wang, D. Astruc and A. S. Abd-El-Aziz, Chem. Soc. Rev.,
7
, 23770-23774.
2
019, 48, 558-636.
3
4 X. Zhang, N. A. Vermeulen, Z. Huang, Y. Cui, J. Liu, M. D.
Krzyaniak, Z. Li, H. Noh, M. R. Wasielewski, M. Delferro and
O. K. Farha, ACS Appl. Mater. Interfaces, 2018, 10, 635-641.
S. Carrara, M. Mauro and C. F. Hogan, ChemElectroChem,
2
019, 6, 5790-5796.
M. Karayilan, W. P. Brezinski, K. E. Clary, D. L. Lichtenberger,
R. S. Glass and J. Pyun, Angew. Chem. Int. Ed., 2019, 58,
7
537-7550.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins