CREATED USING THE RSC ARTICLE TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS
Page 9 of 10
ARTICLE TYPE
Catalysis Science & Technology
o
6
7
8
9
A. Yin, C. Wen, X. Guo, W. Dai and K. Fan, J. Catal., 2011, 280, 77.
T. S. Richard, J. Polym. Sci. A., 2004, 42, 5847.
Schlossman and L. Mitchell, US pat., 4 301 046, 1981.
°C for 1 h, followed by evacuating for 1 h at 400 C and then
cooling the sample wafer down to room temperature. After
acquisition of the background spectrum, the sample was exposed
to CO with increasing pressure (500 Pa) at room temperature.
Then the cell was evacuated and heated from room temperature to
100 °C. The FTꢀIR spectra of CO adsorption on the catalyst were
obtained by subtracting the background spectrum.
G. A. Akin, Marl, H. J. Lewis and T. F. Reid, US pat., 3 334 149, 1967.
10 A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411.
11 J.G. Stevens, R.A. Bourne, M.V. Twigg and M. Poliakoff, Angew. Chem.
Int. Ed., 2010, 49, 8856.
12 J.P. Lange, E. van der Heide, J. van Buijtenen and R. Price,
ChemSusChem, 2012, 5,150.
13 F.M.A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J.
Klankermayer and W. Leitner, Angew. Chem. Int. Ed., 2010, 49, 5510.
14 M.M. Villaverde, N.M. Bertero, A.J. Marchi and T.F. Garetto, Catal.
Today, 2013, 213, 87.
15 C. Xu, L. Zheng, D. Deng, J. Liu and S. Liu, Catal. Commun., 2011, 12,
996.
16 B.M. Nagaraja, A.H. Padmasri, B.D. Raju and K.S.R. Rao, J. Mol.
Catal. A., 2007, 265, 90.
17 L.J. Frainier and H. Fineberg, US Pat., 4 302 397, 1981.
18 B. Liu, L. Lu, B. Wang, T. Cai, I. Katsuyoshi, Appl. Catal. A: Gen. 171
(1998)117–122.
Catalytic hydrogenation
The hydrogenation of DMCD was carried out in a stainlessꢀ
steel fixedꢀbed tubular reactor with the inner diameter of 12 mm.
The calcined Cuꢀbased sample (2.0 g) was loaded into tubular
reactor with quartz powders packed in both sides of the catalyst
bed, and then were reduced in a 10% H2/N2 atmosphere at 300 oC
for 2 h at a heating rate of 2 oC min−1. After activation of catalysts,
20.0 wt. % DMCD (purity >99.9 %) in methanol and H2 were fed
into the reactor at a H2/DMCD molar ratio of 220 at a certain
temperature. During hydrogenation, the total pressure was kept at
6.0 MPa, and the roomꢀtemperature liquid hourly space velocity
(LHSV) of DMCD changed from 1.0 to 4.0 h−1. In addition, the
hydrogenation of FAL was also carried out using the same
instrument. After activation of catalysts, 100 wt. % FAL (purity >
99.0%) without solvent and H2 were fed into the reactor at a
H2/FAL molar ratio of 16. Hydrogenation was performed at
atmospheric pressure, and LHSV of FAL was set at 1.0 hꢀ1.
Finally, liquid products were analyzed by an Agilent GC7890B
gas chromatograph equipped with flame ionization detector and
DBꢀwax capillary column. The injector temperature was set at 230
oC, and the detector temperature was set at 240 oC. As for products
from DMCD hydrogenation, the column temperature was
19 J. Wu, Y. Shen, C. Liu, H. Wang, C. Geng and Z. Zhang, Catal.
Commun., 2005, 6, 633.
20 P.D. Vaidya and V.V. Mahajani, Ind. Eng. Chem. Res., 2003, 42, 3881.
21 K. Tahara, H. Tsuji, H. Kimura, T. Okazaki, Y. Itoi, S. Nishiyama, S.
Tsuruya and M. Masai, Catal. Today, 1996, 28, 267.
22 X. Li, Z. Sun, J. Chen, Y. Zhu, and F. Zhang, Ind. Eng. Chem. Res.,
2014, 53, 619.
23 J. Kijenski, P. Winiarek, T. Paryjczak, A. Lewicki and A. Mikołajska,
Appl. Catal. A., 2002, 233, 171.
24 S. Sitthisa, T. Sooknoi, Y. Ma, P.B. Balbuena, D.E. Resasco, J. Catal.
277 (2011) 1–13.
25 S. Sitthisa and D.E. Resasco, Catal. Lett., 2011, 141, 784.
26 B.M. Nagaraja, V.S. Kumar, V. Shasikala, A.H. Padmasri, B. Sreedhar,
B.D. Raju and K.S.R. Rao, Catal. Commun., 2003, 4, 287.
27 X. Chen, H. Li, H. Luo and M. Qiao, Appl. Catal. A., 2002, 233, 13.
28 R.S. Rao, R.T. Baker and M.A. Vannice, Catal. Lett., 1999, 60, 51.
29 R. Rao, A. Dandekar, R.T.K. Baker and M.A Vannice, J. Catal., 1997,
171, 406.
30 B.M. Nagaraja, A.H. Padmasri, P. Seetharamulu, K.H.P. Reddy, B. D.
Raju and K.S.R. Rao, J. Mol. Catal. A., 2007, 278, 29.
31 S.P. Lee and Y.W. Chen, Ind. Eng. Chem. Res., 1999, 38, 2548.
32 Q. Hu, G. Fan, S. Zhang, L.Yang and F. Li, J. Mol. Catal. A., 2015, 397,
134.
33 K.L. Deutsch and B.H. Shank, J. Catal., 2012, 285, 235.
34 S. Zhang, G. Fan and F. Li, Green Chem., 2013, 15, 2389.
35 M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abildꢀ
Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. Kniep, M. Tovar, R. W.
Fischer, J.K. Nørskov and R. Schlögl, Science, 2012, 336, 893.
36 R.K. Marella, C.K.P. Neeli, S.R.R. Kamaraju and D.R. Burri, Catal. Sci.
Technol., 2012, 2, 1833.
o
o
increased from 150 to 180 C with a ramp rate of 10 C/min and
then to 240 oC with a ramp rate of 20 C/min. As for products
o
from FAL hydrogenation, the column temperature was increased
o
o
from 55 to 100 C with a ramp rate of 20 C/min and then to 230
oC with a ramp rate of 30 oC/min. The conversions were
calculated by the change in molar number before and after the
reaction. The selectivities of all products were calculated by the
equation: selectivity (mol.%) = (moles of product)/(the sum of the
moles of all products) × 100 %. The average conversions and
selectivities with the experimental errors less than 3 % were
obtained based on at least 3 parallel experiments.
37 Y. Jyothi, V. Vakati, T. Satyanarayana and P. Veerasomaiah, Indian J.
Chem. A, 2014, 53A, 553.
38 R.K. Marella, K.S. Koppadi, Y. Jyothi, K.S.R. Rao and D.R. Burri, New
J. Chem., 2013, 37, 3229.
Acknowledgment
39 Y. Zhao, F. Li, R. Zhang, D.G. Evans and X. Duan, Chem. Mater., 2002,
14, 4286.
40 S. Wang, G. Sun, Z. Wu and Q. Xin, J. Power Sources, 2007, 165, 128.
41 C. Wen, A. Yin, Y. Cui, X. Yang, W. Dai and K. Fan, Appl. Catal. A.,
2013, 458, 82.
We gratefully thank the financial support from 973 Program
(2011CBA00506), the National Natural Science Foundation of
China, the Specialized Research Fund for the Doctoral Program
of Higher Education (20120010110012), and Project from
Beijing Engineering Center for Hierarchical Catalysts.
42 Y. Tang, Y. Liu, P. Zhu, Q. Xue, L. Chen and Y. Lu, AIChE J., 2009,
55, 1217.
43 M. Su, R. Yang and M. Li, Fuel, 2013, 103, 398.
44 A.C. Tavares, M.I. da Silva Pereira, M.H. Mendonça, M.R. Nunes, F. M.
Costa and C.M. Sa, J. Electroanal. Chem., 1998, 449, 91.
45 J. Töpfer and A. Feltz, Solid State Ionics, 1993, 59, 249.
46 K.H.P. Reddy, N. Anand, V. Venkateswarlu, K.S.R. Rao and D.R. Burri,
J. Mol. Catal. A., 2012, 355, 180.
Notes and references
1
V.M. Deshpande, K. Ramnarayan and C.S. Narasimhan, J. Catal., 1990,
121, 174.
2
J. Zhang, G. Leitus, Y. BenꢀDavid and D. Milstein, Angew. Chem. Int.
Ed., 2006, 118, 1131.
47 L. Chen, P. Guo, M. Qiao, S. Yan, H. Li, W. Shen, H. Xu and K. Fan, J.
Catal., 2008, 257, 172.
48 A. Yin, X. Guo, W. Dai, H. Li and K. Fan, Appl. Catal. A., 2008, 349,
91.
3
4
S. Zhang, G. Fan and F. Li, Green Chem., 2013, 15, 2389.
J. Zheng, H. Lin, Y. Wang, X. Zheng, X. Duan and Y. Yuan, J. Catal.,
2013, 297, 110.
5
J.H. Schlander and T. Turek, Ind. Eng. Chem. Res., 1999, 38, 1264.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 9