and 7 are stirred with the diester 8 and potassium carbonate
in acetonitrile at room temperature. The results using this
mild and straightforward procedure are shown in Table 1.
Table 1. One-Pot Access to Cyclobutane-1,2-dicarboxylatesa
Figure 1. Synthetically useful cyclobutene derivatives.
mild conditions that are compatible with the presence of a
potential leaving group, viz., a protected hydroxyl, in the
enamine component, making it a simple and convenient
source of 2-cyclobutene-1,2-dicarboxylates of the form 4.
8
In initial experiments we used the conventional method,
reacting enamines 5a-c, prepared by condensation of the
respective aldehydes 6a-c and diethylamine 7a, with the
fumarate 8a (Scheme 1). Although quantities of the desired
aldehyde amine
isolated products
(yield %)b
entry
(mmol)
(equiv) ester
method
1
2
3
4
5
6
7
8
9
6a (2.2) 7a (2)
8a
8a
8a
8b
8c
8a
8a
8a
8a
8a
9 (65), 16 (15)
10 (64), 17 (9)
10 (62), 17 (16)
12 (63), 18 (10)
A
A
B
A
A
A
A
A
B
A
6b (18)
7a (2)
6b (0.6) 7a (1)
6b (0.7) 7a (2)
6b (0.6) 7a (2)
c
10 (65)
a
2 3
Enamines prepared with K CO using the method in ref 8. All
6c (0.9)
6d (15)
7a (2)
7a (2)
11 (39)
13 (58)
b
yields based on starting aldehyde 6. The enamine was distilled.
c
d
d
c,e
6d (0.9) 7b (1)
6d (0.9) 7b (1)
6e (1.4) 7a (2)
14 (36), 19b (36)
c
14 (61)
products 9, 10, and 11 were obtained, in our hands the
sequence suffered from irreproducibility associated with
manipulating the enamines, especially 5b and 5c.
To address the problems associated with the isolation of
enamines, we developed a one-pot, multicomponent variant
of these cycloadditions in which the enamine precursors 6
10
15 (26)
a
Method A: a mixture of 6, 7, K2CO3 (1 mol per mol of 7), and 8 (1.2
mol per mol of 6) in MeCN (1 mL per mmol of 6) was stirred at room
temperature for 2-3 d. Method B: as method A, but with 8 added after 1
h. Yield based on 6. c No other products were investigated. The amine
b
d
e
was added as a 2 M solution in THF. Yield based on 8a.
(
4) For examples, see: (a) Namyslo, J. C.; Kaufmann, D. E. Chem. ReV.
The initial targets 9-11 were obtained in improved and
consistent yields working on various scales (entries 1-6).
The products with fumarate 8a and maleate 8c (entry 5) were
2
4
7
003, 103, 1485-1537. (b) Paquette, L. A.; Geng, F. Org. Lett. 2002, 4,
547-4549. (c) Geng, F.; Liu, J.; Paquette, L. A. Org. Lett. 2002, 4, 71-
3. (d) Nicolaou, K. C.; Vega, J. A.; Vassilikogiannakis, G. Angew. Chem.,
Int. Ed. 2001, 40, 4441-4445.
8
,11
(5) (a) Binns, F.; Hayes, R.; Ingham, S.; Saengchantara, S. T.; Turner,
the same, a feature of this type of reaction
that can be
R. W.; Wallace, T. W. Tetrahedron 1992, 48, 515-530. (b) Binns, F.;
Hayes, R.; Hodgetts, K. J.; Saengchantara, S. T.; Wallace, T. W.; Wallis,
C. J. Tetrahedron 1996, 52, 3631-3658.
attributed to the rapid isomerization of maleate into fumarate
12
on contact with the enamine or a related species. The minor
(6) (a) Bloomfield, J. J.; Owsley, D. C. Org. Photochem. Synth. 1976,
stereoisomers formed in the cycloadditions with 6a and 6b
2
, 36-40 and references therein. (b) Gauvry, N.; Comoy, C.; Lescop, C.;
Huet, F. Synthesis 1999, 574-576.
7) (a) Jung, M. E.; Sledeski, A. W. J. Chem. Soc., Chem. Commun.
(
1
993, 589-591. (b) Gourdel-Martin, M.-E.; Comoy, C.; Huet, F. Tetra-
hedron: Asymmetry 1999, 10, 403-410. (c) Pichon, C.; Hubert, C.;
Alexandre, C.; Huet, F. Tetrahedron: Asymmetry 2000, 11, 2429-2434.
(d) Hubert, C.; Alexandre, C.; Aubertin, A.-M.; Huet, F. Tetrahedron 2002,
5
8, 3775-3778. (e) Gharbaoui, T.; Legraverend, M.; Bisagni, E. Tetrahe-
dron Lett. 1992, 33, 7141-7144.
8) Brannock, K. C.; Bell, A.; Burpitt, R. D.; Kelly, C. A. J. Org. Chem.
964, 29, 801-812.
9) (a) Ichihara, A.; Kimura, R.; Yamada, S.; Sakamura, S. J. Am. Chem.
(
1
(
Soc. 1980, 102, 6353-6355. (b) Johnson, C. R.; De Jong, R. L. J. Org.
Chem. 1992, 57, 594-599. (c) Kitayama, T.; Kawauchi, T.; Ueda, N.; Kniep,
C. S.; Shin, W. S.; Padias, A. B.; Hall, H. K., Jr. Macromolecules 2002,
3
5, 1591-1598.
10) Bienaym e´ , H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J.
000, 6, 3321-3329.
(
Figure 2. Structures relating to Table 1 and other experiments.
2
4234
Org. Lett., Vol. 7, No. 19, 2005