Organic Letters
Experimental details, controlled experiment in Scheme
Letter
R. V.; Surkus, A. − E.; Junge, H.; Pohl, M.-M.; Radnik, J.; Rabeah, J.;
̈ ̈
Huan, H.; Schunemann, V.; Bruckner, A.; Beller, M. Nanoscale
2, characterization of anilines, and NMR spectra (PDF)
Fe2O3-Based Catalysts for Selective Hydrogenation of Nitroarenes to
Anilines. Science 2013, 342, 1073. (e) Zhang, S.; Chang, C.-R.; Huang,
Z.-Q.; Li, J.; Wu, Z.; Ma, Y.; Zhang, Z.; Wang, Y.; Qu, Y. High
Catalytic Activity and Chemoselectivity of Sub-nanometric Pd
Clusters on Porous Nanorods of CeO2 for Hydrogenation of
Nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629.
AUTHOR INFORMATION
Corresponding Authors
■
(3) (a) Orlandi, M.; Tosi, F.; Bonsignore, M.; Benaglia, M. Metal-
Free Reduction of Aromatic and Aliphatic Nitro Compounds to
Amines: A HSiCl3-Mediated Reaction of Wide General Applicability.
Org. Lett. 2015, 17, 3941. (b) Orlandi, M.; Benaglia, M.; Tosi, F.;
Annunziata, R.; Cozzi, F. HSiCl3-Mediated Reduction of Nitro-
Derivatives to Amines: Is Tertiary Amine-Stabilized SiCl2 the Actual
Reducing Species. J. Org. Chem. 2016, 81, 3037. (c) Porwal, D.;
Oestreich, M. B(C6F5)3-Catalyzed Reduction of Aromatic and
Aliphatic Nitro Groups with Hydrosilanes. Eur. J. Org. Chem. 2016,
2016, 3307.
(4) (a) Lu, H.; Geng, Z.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Metal-Free
Reduction of Aromatic Nitro Compounds to Aromatic Amines with
B2pin2 in Isopropanol. Org. Lett. 2016, 18, 2774. (b) Yang, K.; Zhou,
F.; Kuang, Z.; Gao, G.; Driver, T. G.; Song, Q. Diborane-Mediated
Deoxygenation of o-Nitrostyrenes to Form Indoles. Org. Lett. 2016,
18, 4088. (c) Liu, S.; Zhou, Y.; Sui, Y.; Liu, H.; Zhou, H. B2(OH)4-
mediated One-pot Synthesis of Tetrahydroquinoxalines from 2-
Amino(nitro)anilines and 1,2-Dicarbonyl Compounds in Water. Org.
Chem. Front. 2017, 4, 2175. (d) Zhou, Y.; Zhou, H.; Liu, S.; Pi, D.;
Shen, G. Water as a Hydrogen Source in Palladium-catalyzed
Reduction and Reductive Amination of Nitroarenes Mediated by
Diboronic Acid. Tetrahedron 2017, 73, 3898. (e) Pi, D.; Zhou, H.;
Zhou, Y.; Liu, Q.; He, R.; Shen, G.; Uozumi, Y. Cu-catalyzed
Reduction of Azaarenes and Nitroaromatics with Diboronic Acid as
Reductant. Tetrahedron 2018, 74, 2121.
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
L.C.M.C. acknowledges the financial support by the JSPS
Postdoctoral Fellowships (P18336). I.S. acknowledges the
scholarship from JICA Innovative Asia Program (D1805473).
This work was supported by JSPS KAKENHI grant nos.
JP15H05808 to K.M., JP15H05811 to M.S., JP18H04280 to
Y.N. (Precisely Designed Catalysis with Customized Scaffold-
ing), and JP18H01986 to Y.N. (Grant-in-Aid for Scientific
Research (B)).
(5) (a) Park, K. K.; Oh, C. H.; Joung, W. K. Sodium Dithionite
Reduction of nitroarenes Using Viologen as an Electron Phase
Transfer Catalyst. Tetrahedron Lett. 1993, 34, 7445. (b) McLaughlin,
M. A.; Barnes, D. M. A Practical and Selective Reduction of
Nitroarenes Using Elemental Sulfur and Mild base. Tetrahedron Lett.
2006, 47, 9095. (c) Duan, Z.; Ranjit, S.; Liu, X. One-Pot Synthesis of
Amine-Substituted Aryl Sulfides and Benzo[b]thiophene Derivatives.
Org. Lett. 2010, 12, 2430.
(6) Bhattacharjee, A.; Hosoya, H.; Ikeda, H.; Nishi, K.; Tsurugi, H.;
Mashima, K. Metal-Free Deoxygenation and Reductive Disilylation of
Nitroarenes by Organosilicon Reducing Reagents. Chem. - Eur. J.
2018, 24, 11278.
(7) (a) Oshima, K.; Ohmura, T.; Suginome, M. Dearomatizing
Conversion of Pyrazines to 1,4-Dihydropyrazine Derivatives via
Transition-metal-free Diboration, Silaboration, and Hydroboration.
Chem. Commun. 2012, 48, 8571. (b) Ohmura, T.; Morimasa, Y.;
Suginome, M. Organocatalytic Diboration Involving Reductive
Addition of a Boron−Boron σ-Bond to 4,4’-Bipyridine. J. Am.
Chem. Soc. 2015, 137, 2852.
(8) Ohmura, T.; Morimasa, Y.; Suginome, M. 4,4’-Bipyridine-
catalyzed Stereoselective trans-Diboration of Acetylenedicarboxylates
to 2,3-Diborylfumarates. Chem. Lett. 2017, 46, 1793.
REFERENCES
■
(1) (a) For representative books and reviews, see: Booth, G. Nitro
Compounds, Aromatic; Wiley: New York, 2000. (b) Tafesh, A. M.;
Weiguny, J. A Review of the Selective Catalytic Reduction of
Aromatic Nitro Compounds into Aromatic Amines, Isocyanates,
Carbamates, and Ureas Using CO. Chem. Rev. 1996, 96, 2035.
(c) Hoogenraad, M.; Van der Linden, J. B.; Smith, A. A.; Hughes, B.;
Derrick, A. M.; Harris, L. J.; Higginson, P. D.; Pettman, A. J.
Accelerated Process Development of Pharmaceuticals: Selective
Catalytic Hydrogenations of Nitro Compounds Containing Other
Functionalities. Org. Process Res. Dev. 2004, 8, 469. (d) Blaser, H.-U.;
Steiner, H.; Studer, A. Selective Catalytic Hydrogenation of
Functionalized Nitroarenes: An Update. ChemCatChem 2009, 1,
̈
210. (e) Jagadeesh, R. V.; Wienhofer, G.; Westerhaus, F. A.; Surkus,
A.-E.; Pohl, M.-M.; Junge, H.; Junge, K.; Beller, M. Efficient and
Highly Selective Iron-catalyzed Reduction of Nitroarenes. Chem.
Commun. 2011, 47, 10972. (f) Kadam, H. K.; Tilve, S. G.
Advancement in Methodologies for Reduction of Nitroarenes. RSC
Adv. 2015, 5, 83391. (g) Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.;
Benaglia, M. Recent Developments in the Reduction of Aromatic and
Aliphatic Nitro Compounds to Amines. Org. Process Res. Dev. 2018,
22, 430. (h) Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M.
Reduction of Nitro Compounds Using 3d-Non-Noble Metal
Catalysts. Chem. Rev. 2019, 119, 2611.
(9) For syn-1,2-silaboration of terminal alkynes and allenes catalyzed
by 4,4′-bipyridyl, see: Morimasa, Y.; Kabasawa, K.; Ohmura, T.;
Suginome, M. Pyridine-Based Organocatalysts for Regioselective syn-
1,2-Silaboration of Terminal Alkynes and Allenes. Asian J. Org. Chem.
2019, 8, 1092.
(2) For representative examples, see: (a) Corma, A.; Serna, P.
Chemoselective Hydrogenation of Nitro Compounds with Supported
(10) Disilane was used as a reductant under harsh reaction
conditions: Tsui, F.-P.; Vogel, T. M.; Zon, G. Deoxygenation of
Aryl Nitro Compounds with Disilanes. J. Org. Chem. 1975, 40, 761.
screening.
(13) Catalytic activity of heteroaromatic compounds for diboron
activation. For reviews, see: (a) Neeve, E. C.; Geier, S. J.; Mkhalid, I.
A. I.; Westcott, S. A.; Marder, T. B. Diboron(4) Compounds: From
́
Gold Catalysts. Science 2006, 313, 332. (b) Boronat, M.; Concepcion,
́
P.; Corma, A.; Gonzalez, S.; Illas, F.; Serna, P. A Molecular
Mechanism for the Chemoselective Hydrogenation of Substituted
Nitroaromatics with Nanoparticles of Gold on TiO2 Catalysts: A
Cooperative Effect between Gold and the Support. J. Am. Chem. Soc.
2007, 129, 16230. (c) Nakamula, I.; Yamanoi, Y.; Imaoka, T.;
Yamamoto, K.; Nishihara, H. A Uniform Bimetallic Rhodium/Iron
Nanoparticle Catalyst for the Hydrogenation of Olefins and
Nitroarenes. Angew. Chem., Int. Ed. 2011, 50, 5830. (d) Jagadeesh,
E
Org. Lett. XXXX, XXX, XXX−XXX