Table 1 Transfer hydrogenation of TFAP in the presence of
metalloenzymes
3 J. Steinreiber and T. R. Ward, Coord. Chem. Rev., 2008, 252,
751–766.
a
4
T. R. Ward, Acc. Chem. Res., 2011, 44, 47–57; M. E. Wilson and
G. M. Whitesides, J. Am. Chem. Soc., 1978, 100, 306–307; C.-C. Lin,
C.-W. Lin and A. S. C. Chan, Tetrahedron: Asymmetry, 1999, 10,
b
ee (%) [Conv.] (%)
Entry
1
Complex
Protein
Time (h)
3
4
6
6
6
6
6
b-LG
b-LG
b-LG
b-LG (A)
b-LG (B)
Av
48
72
48
72
72
24
9.5
16 [50]
20 [14]
17 [50]
26 [68]
24 [72]
0 [100]
0 [84]
1
887–1893.
c
2
5
X. Wu, C. Wang and J. Xiao, Platinum Met. Rev., 2010, 54, 3–19;
J. Canivet, G. Suss-Fink and P. Stepnicka, Eur. J. Inorg. Chem.,
3
4
5
6
7
2
007, 4736–4742; C. Leiva, C. Lo and R. H. Fish, J. Organomet.
Chem., 2010, 695, 145–150; I. Nieto, M. S. Livings, J. B. I. Sacci,
L. E. Reuther, M. Zeller and E. T. Papish, Organometallics, 2011,
HEWL
3
0, 6339–6342; P. Govindaswamy, J. Canivet, B. Therrien,
G. Suss-Fink, P. Stepnicka and J. Ludvik, J. Organomet. Chem.,
007, 692, 3664–3675; Y. Himeda, N. Onozawa-Kamatsuzaki,
a
b
Reaction conditions: [TFAP] = 5 mM, 2% catalyst. Determined
by chiral GC after extraction of the organics with diisopropyl ether or
by chiral HPLC. The (R)-configuration is assigned according to
2
H. Sugihara, H. Arakawa and K. Kasuga, J. Mol. Catal. A:
Chem., 2003, 195, 95–100; Y. Himeda, N. Onozawa-Komatsuzaki,
S. Miyazawa, H. Sugihara, T. Hirose and K. Kasuga, Chem.–Eur. J.,
c
ref. 23. [TFAP] = 10 mM, 1% catalyst.
2
008, 14, 11076–11081.
S. Ogo, T. Abura and Y. Watanabe, Organometallics, 2002, 21,
964–2969.
C. Romain, S. Gaillard, M. K. Elmkaddem, L. Toupet,
C. Fischmeister, C. M. Thomas and J.-L. Renaud, Organometallics,
6
7
Finally, the amount of (R)- and (S)-enantiomers was measured
by chiral GC analysis of extracts or chiral HPLC analysis of the
reaction medium (Table 1 and Fig. S16–S18, ESIw). Induction of
enantioselectivity for the (R)-isomer was observed with all the b-LG
constructs with subtle differences depending on the metal cofactor
and the protein host. Indeed, ee was independent of the fatty acid
chain (entries 1 and 3) but slightly higher for the Ru(II) complex
compared to the Rh(III) analogue derived from palmitic acid
2
2
010, 29, 1992–1995.
S. E. Clapham, A. Hadzovic and R. H. Morris, Coord. Chem. Rev.,
004, 248, 2201–2237.
8
2
9 M. Creus, A. Pordea, T. Rossel, A. Sardo, C. Letondor,
A. Ivanova, I. Le Trong, R. E. Stenkamp and T. R. Ward, Angew.
Chem., Int. Ed., 2008, 47, 1400–1404; C. Letondor, N. Humbert
and T. R. Ward, Proc. Natl. Acad. Sci. U. S. A., 2005, 102,
(
entries 1 and 2). Surprisingly, both genetic variants of b-LG yielded
higher ee’s than the protein sample comprising both variants
entries 3–5). We and others have observed by ESI-MS analysis
that the commercial b-LG sample (mixtures of genetic variants)
4
683–4887; C. Letondor, A. Pordea, N. Humbert, A. Ivanovna,
S. Mazurek, M. Novic and T. R. Ward, J. Am. Chem. Soc., 2006,
28, 8320–8328.
1
(
1
0 B. Talbi, P. Haquette, A. Martel, F. de Montigny, C. Fosse,
S. Cordier, T. Roisnel, G. Jaouen and M. Salmain, Dalton Trans.,
2010, 39, 5605–5607.
22
contained several lactosylated forms due to sample preparation.
Conversely, no lactosylation was detected for the pure variants.
Since no difference between the ee’s was observed between the two
variants taken separately (entries 4 and 5), heterogeneity of the
b-LG sample was solely responsible for the lower selectivity. When
b-LG was replaced by HEWL or Av, no enantioselectivity was
detected (entries 6 and 7), providing evidence that enantiopreference
arose from incorporation of the metal cofactors within b-LG.
In conclusion, a combination of easily accessible Ru(II)/
Rh(III) complexes derived from palmitic or lauric acid and
inexpensive, readily available and crystallisable b-lactoglobulin
yielded supramolecular constructs displaying catalytic activity
in the transfer hydrogenation of trifluoroacetophenone. Promising
enantioselectivities were observed as a result of insertion of the fatty
acid derivatives within the b-LG’s binding site. Current efforts are
aimed at solving the X-ray structure of metal cofactorCb-LG
constructs so as to gain insight into the interaction between both
species at the atomic level and eventually improve their activity and
selectivity. Extension of this work to other ketones and imines is
also under investigation.
11 P. Haquette, B. Talbi, L. Barilleau, N. Madern, C. Fosse and
M. Salmain, Org. Biomol. Chem., 2011, 9, 5720–5727.
1
2 N. Madern, B. Talbi and M. Salmain, Appl. Organomet. Chem.,
DOI: 10.1002/aoc.2929.
13 L. Panella, J. Broos, J. Jin, M. W. Fraaije, D. B. Janssen,
M. Jeromius-Stratingh, B. L. Feringa, A. J. Minnaard and
J. G. de Vries, Chem. Commun., 2005, 5656–5658; M. T. Reetz,
M. Rentzsch, A. Pletsch and M. Maywald, Chimia, 2002, 56,
7
21–723; M. T. Reetz, M. Rentzsch, A. Pletsch, M. Maywald,
P. Maiwald, J. J.-P. Peyralans, A. Maichele, Y. Fu, N. Jiao,
F. Hollmann, R. Mondiere and A. Taglieber, Tetrahedron, 2007,
3, 6404–6414; C. A. Kruithof, M. A. Casado, G. Guillena,
`
6
M. R. Egmond, A. van de Kerk-van Hoof, A. J. R. Heck, R. J.
M. Klein Gebbink and G. van Koten, Chem.–Eur. J., 2005, 11,
6
869–6877; L. Rutten, B. Wieczorek, J. Mannie, C. A. Kruithof,
H. P. Dijkstra, M. R. Egmond, M. Lutz, R. Gebbink, P. Gros and
G. van Koten, Chem.–Eur. J., 2009, 15, 4270–4280; B. Wieczorek,
A. Traff, P. Krumlinde, H. P. Dijkstra, M. R. Egmond, G. van
Koten, J. E. Backvall and R. Gebbink, Tetrahedron Lett., 2011, 52,
1
601–1604.
1
1
4 G. Kontopidis, C. Holt and L. Sawyer, J. Dairy Sci., 2004, 87, 785–796.
5 B. Y. Qin, M. C. Bewley, L. K. Creamer, H. M. Baker, E. N. Baker
and G. B. Jameson, Biochemistry, 1998, 37, 14014–14023.
16 D. Frapin, E. Dufour and T. Haertle, J. Protein Chem., 1993, 12,
43–449.
4
The Agence Nationale de la Recherche (ANR) is gratefully
acknowledged for financial support (project ‘‘Artzymes’’ grant
number ANR-11-BS07-027-01).
1
7 J. I. Loch, A. Polit, P. Bonarek, D. Olszewska, K. Kurpiewska,
M. Dziedzicka-Wasylewska and K. Lewinski, Int. J. Biol. Macromol.,
2012, 50, 1095–1102.
1
1
8 J. Canivet, L. Karmazin-Brelot and G. Suss-Fink, J. Organomet.
Chem., 2005, 690, 3202–3211.
9 F. Zsila, Z. Bikadi, I. Fitos and M. Simonyi, Curr. Drug Discovery
Technol., 2004, 1, 133–153.
Notes and references
1
T. Heinisch and T. R. Ward, Curr. Opin. Chem. Biol., 2010, 14,
20 G. Gupta, K. T. Prasad, B. Das and K. M. Rao, Polyhedron, 2010,
29, 904–910.
21 M. Poizat, I. Arends and F. Hollmann, J. Mol. Catal. B: Enzym.,
2010, 63, 149–156.
184–199; M. R. Ringenberg and T. R. Ward, Chem. Commun.,
2011, 47, 8470–8476; Y. Lu, Angew. Chem., Int. Ed., 2006, 45,
5588–5601; Y. Lu, N. Yeung, N. Sieracki and N. M. Marshall,
Nature, 2009, 460, 855–862; Y. Lu, Curr. Opin. Chem. Biol., 2005,
, 118–126.
P. J. Deuss, R. den Heeten, W. Laan and P. C. J. Kamer,
22 J. Leonil, D. Molle, J. Fauquant, J. L. Maubois, R. J. Pearce and
S. Bouhallab, J. Dairy Sci., 1997, 80, 2270–2281.
23 Z. Cakl, S. Reimann, E. Schmidt, A. Moreno, T. Mallat and
A. Baiker, J. Catal., 2011, 280, 104–115.
9
2
Chem.–Eur. J., 2011, 17, 4680–4698.
1
1986 Chem. Commun., 2012, 48, 11984–11986
This journal is c The Royal Society of Chemistry 2012