10.1002/chem.201901442
Chemistry - A European Journal
COMMUNICATION
nucleophilic phenolic oxygen, formation of the proposed
intermediate can be rationalized. Conducted CV measurements
underline by the fact that applied phenols exhibit a lower oxidation
S.R.W. thanks the DFG (Wa1276/14-1) for financial support. S.L.
and S.R.W. acknowledge the Carl-Zeiss Foundation for granting
a fellowship and the research network ELYSION, respectively.
potential than the corresponding benzoxazoles.
A similar
mechanistic rationale has already been reported for several
published anodic C,C cross-coupling reactions.[11-14] Thus, an
extraordinary reaction pathway, which would not be easy to
realize by conventional methods, enables access to highly
functionalized mixed N,N-diarylamides by simply choosing a
Keywords: C,N-coupling • electrochemistry • C-H activation •
oxidation • sustainable chemistry
[1]
[2]
T. Németh, A. Kormos, T. Tóth, G. T. Balogh, P. Huszthy, Monatsh Chem.
2015, 146, 1291–1297.
benzoxazole
and
phenol
components
and
then
a) S. Lakatos, J. Fetter, F. Bertha, P. Huszthy, T. Tóth, V. Farkas, G.
Orosz, M. Hollósi, Tetrahedron 2008, 64, 1012–1022; b) B. Ágai, V.
Németh, Z. Böcskei, K. Simon, I. Bitter, L. Töke, Tetrahedron 1996, 52,
6713–6724.
dehydrogenatively coupling them by direct electrolysis.
[3]
[4]
a) E. Zhang, X. Zhang, Y. Cai, D. Wang, T. Xu, J. Li, M. Yan, Y. Zou,
RSC Adv. 2014, 4, 39020–39029; b) T. Okubo, R. Yoshikawa, S. Chaki,
S. Okuyama, A. Nakazato, Bioorganic Med. Chem. 2004, 12, 423–438.
a) E. Feng, H. Huang, Y. Zhou, D. Ye, H. Jiang, H. Liu, J. Org. Chem.
2009, 74, 2846–2849; b) Y. Murakami, Y. Yokoyama, C. Sasakura, M.
Tamagawa, Chem. Pharm. Bull. 1983, 31, 423–428; c) Y. Murakami, T.
Watanabe, T. Otsuka, T. Iwata, Y. Yamada, Y. Yokoyama, Chem. Pharm.
Bull. 1995, 43, 1287–1293; d) C. Soulié, Tetrahedron 2001, 57, 1035–
1040.
[5]
[6]
A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2018, 57, 5594–5619; Angew. Chem. 2018, 130,
5694–5721.
a) M. D. Kärkäs, Chem. Soc. Rev. 2018, 47, 5786–5865; b) H. Zhang, A.
Lei, Synthesis 2019, 51, 83–96; c) K. Liu, S. Tang, T. Wu, S. Wang, M.
Zou, H. Cong, A. Lei, Nat. Commun. 2019, 10, 639.
[7]
[8]
S. Tang, L. Zeng, A. Lei, J. Am. Chem. Soc. 2018, 140, 13128–13135.
a) N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015,
349, 1326–1330; b) L. Niu, H. Yi, S. Wang, T. Liu, J. Liu, A. Lei, Nat.
Commun. 2017, 8, 14226.
Figure 2. Scaling-up of electrochemical coupling reaction. 25 mL beaker-type
cell (left), 200 mL beaker-type cell (right).
[9]
a) S. R. Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Chem. Rev.
2018, 118, 6706-6765; b) S. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27-45;
c) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei,
Chem. Rev. 2017, 117, 9016–9085.
Easy scalability of this protocol was proven by a scale-up
experiment from a 25 mL beaker-type electrolysis cell (using
5.00 mmol A and 15.0 mmol B) to a 200 mL beaker-type cell (40.0
mmol A and 120 mmol B) was performed. Application of the same
electrolytic protocol provides 4 in an even higher yield of 51%
(6.77 g) confirming clear evidence of an easy scalability of this
protocol. General set-up is shown in Figure 2. More detailed
information can be found within the Supporting Information.
We herein present the first direct approach to bis(N,N-
hydroxyphenyl)amides by an anodic dehydrogenative coupling
reaction. Compared to other protocols, in this case no metal- and
multi-step-sequences or protecting groups are required leading to
a short-cut in synthesis. Due to the simple set-up using an
undivided cell with a two-electrode arrangement, the protocol is
even attractive with moderate yields up to 57%.
[10] a) A. Kirste, B. Elsler, G. Schnakenburg, S. R. Waldvogel, J. Am. Chem.
Soc. 2012, 134, 3571–3576; b) S. Lips, S. R. Waldvogel,
ChemElectroChem 2019, in press. DOI: 10.1002/celc.201801620.
[11] B. Riehl, K. Dyballa, R. Franke, S. R. Waldvogel, Synthesis 2016, 49,
252–259.
[12] B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2014, 53, 5210–5213; Angew. Chem. 2014, 126,
5311–5314.
[13] A. Wiebe, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2016, 55, 11801–11805; Angew. Chem. 2016,
128, 11979–11983.
[14] S. Lips, A. Wiebe, B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke, S.
R. Waldvogel, Angew. Chem. Int. Ed. 2016, 55, 10872–10876, Angew.
Chem. 2016, 128, 11031–11035.
[15] a) A. Wiebe, S. Lips, D. Schollmeyer, R. Franke, S. R. Waldvogel, Angew.
Chem. Int. Ed. 2017, 56, 14727–14731; Angew. Chem. 2017, 129,
14920–14925; b) S. Lips, B. A. Frontana-Uribe, M. Dörr, D. Schollmeyer,
R. Franke, S. R. Waldvogel, Chem. Eur. J. 2018, 24, 6057–6061.
[16] a) E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302–
308; b) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117,
13230-13319.
Experimental Section
Detailed information on general procedures, electrolytic conversions and
product characterization can be found in the Supporting Information.
[17] S. Tang, S. Wang, Y. Liu, H. Cong, A. Lei, Angew. Chem. Int. Ed. 2018,
57, 4737–4741; Angew. Chem., 2018, 130, 4827–4831.
[18] C. Gütz, B. Klöckner, S. R. Waldvogel, Org. Process Res. Dev. 2015, 20,
26–32.
[19] L. Eberson, O. Persson, M. P Hartshorn, Angew. Chem. Int. Ed. 1995,
34, 2268–2269; Angew. Chem. 1995, 107, 2417–2418.
[20] I. Colomer, A. E. R. Chamberlain, M. B. Haughey, T. J. Donohoe, Nat.
Rev. Chem. 2017, 1, 1-12.
Acknowledgements
This article is protected by copyright. All rights reserved.