of the moderately (S)-selective variant E1-D6 (E = 4; Leu278-
His/Ala281Cys), greatly reduced but not completely inhibited
growth is observed. Upon performing the experiment with (S)-
1 in the absence of (R)-4, no inhibition was observed. Instead,
growth correlated only with the activity of the corresponding
mutant regarding the (S)-substrate. Thus, these experiments
likewise demonstrate that the concept of applying simulta-
neously positive and negative genetic selection pressure is
sufficient and necessary for differentiating enzyme variants
according to their respective degrees of enantioselectivity.
Due to the extracellular enzyme expression of the present
system, we cannot expect an enrichment of (S)-mutants in a
mixture of variants in liquid culture. The situation in an
intracellular system might be different.
(j) T. Matsuura and T. Yomo, J. Biosci. Bioeng., 2006, 101,
449–456; (k) S. Bershtein and D. S. Tawfik, Curr. Opin. Chem.
Biol., 2008, 12, 151–158.
2 Reviews of directed evolution of enantioselective enzymes: (a) M.
T. Reetz, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5716–5722; (b)
M. T. Reetz, Directed evolution of enantioselective enzymes as
catalysts for organic synthesis, in Advances in Catalysis, ed. B. C.
Gates and H. Knozinger, Elsevier, San Diego, 2006, vol. 49,
¨
pp. 1–69; (c) M. T. Reetz, Directed evolution as a means to engineer
enantioselective enzymes, in Asymmetric Organic Synthesis with
´
Enzymes, ed. V. Gotor, I. Alfonso and E. Garcıa-Urdiales,
Wiley-VCH, Weinheim, 2008, pp. 21–63.
3 (a) E. N. Jacobsen, in Comprehensive Asymmetric Catalysis, ed. E.
N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer, Berlin, 1999,
vol. I–III; (b) R. Noyori, Angew. Chem., Int. Ed., 2002, 41,
2008–2022; (c) K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41,
2024–2032; (d) A. Berkessel, in Asymmetric Organocatalysis, ed. A.
Berkessel and H. Groger, Wiley-VCH, Weinheim, 2004; (e) M. T.
¨
In conclusion, we have provided proof-of-principle of a
novel selection system for potential application in the directed
evolution of the enantioselectivity of enzymes. The idea is to
utilize a mixture composed of one enantiomer as a potential
energy source for the host organism and the opposite pseudo-
enantiomer as a potential poison leading to growth inhibition,
these being released by the enantioselective cleavage reaction.
By mimicking kinetic resolution with non-surrogate substrates,
the acetate–fluoroacetate-system allows for the bias-minimal
selection for activity and enantioselectivity simultaneously.
Exploiting the properties of acetic acid and fluoroacetic
acid is not the only possibility for an appropriate energy
source–poison couple. Extension to the desymmetrization of
meso-type substrates in which the two enantiotopic groups are
appropriately labeled is, in principle, possible. We conclude
that the present approach is relevant in any enzyme-catalyzed
kinetic resolution or desymmetrization reaction, provided the
two chiral isosteric moieties functioning as a potential energy
source or poison, respectively, can be designed and incorpo-
rated in the system. The next step in applying the underlying
principle described herein is the establishment of a corre-
sponding E. coli system which would allow very large libraries
to be evaluated in order to obtain practical catalysts for use in
organic chemistry.
Reetz, Angew. Chem., Int. Ed., 2008, 47, 2556–2588.
4 (a) J.-L. Reymond, Enzyme Assays – High-throughput Screening,
Genetic Selection and Fingerprinting, Wiley-VCH, Weinheim, 2006;
(b) H. Lin and V. W. Cornish, Angew. Chem., Int. Ed., 2002, 41,
4402–4425.
5 (a) H. Leemhuis, V. Stein, A. D. Griffiths and F. Hollfelder, Curr.
Opin. Struct. Biol., 2005, 15, 472–478; (b) A. Aharoni, G. Amitai,
K. Bernath, S. Magdassi and D. S. Tawfik, Chem. Biol., 2005, 12,
1281–1289; (c) Y. L. Boersma, M. J. Droge and W. J. Quax, FEBS
¨
J., 2007, 274, 2181–2195; (d) C. H. Collins, J. R. Leadbetter and F.
H. Arnold, Nat. Biotechnol., 2006, 24, 708–712; (e) M. T. Reetz
and L.-W. Wang, Comb. Chem. High Throughput Screening, 2006,
9, 295–299; (f) U. T. Bornscheuer, J. Altenbuchner and H. H.
Meyer, Bioorg. Med. Chem., 1999, 7, 2169–2173.
6 M. T. Reetz and C. J. Ruggeberg, Chem. Commun., 2002,
1428–1429.
¨
7 (a) M. T. Reetz, A. Zonta, K. Schimossek, K. Liebeton and K.-E.
Jaeger, Angew. Chem., Int. Ed. Engl., 1997, 36, 2830–2832; (b) R. J.
Kazlauskas, in Enzyme Assays – High-throughput Screening, Ge-
netic Selection and Fingerprinting, ed. J.-L. Reymond, Wiley-VCH,
Weinheim, 2006, pp. 17–39; (c) M. T. Reetz, in Enzyme Assays –
High-throughput Screening, Genetic Selection and Fingerprinting,
ed. J.-L. Reymond, Wiley-VCH, Weinheim, 2006, pp. 41–76.
8 Y. L. Boersma, M. J. Droge, A. M. van der Sloot, T. Pijning, R. H.
¨
Cool, B. W. Dijkstra and W. J. Quax, ChemBioChem, 2008, 9,
1110–1115.
9 H. Hobenreich, Dissertation, Ruhr-Universitat Bochum, Bochum,
¨
¨
2008.
10 (a) A. Horeau and A. Nouaille, Tetrahedron Lett., 1990, 31,
2707–2710; (b) M. T. Reetz, M. H. Becker, H.-W. Klein and D.
Stockigt, Angew. Chem., Int. Ed., 1999, 38, 1758–1761.
¨
Generous support by the German-Israeli Project Coopera-
tion (DIP) and the Fonds der Chemischen Industrie is grate-
fully acknowledged. We also thank A. Vogel for helpful
11 Reviews of CALB and other lipases:12c (a) R. D. Schmid and R.
Verger, Angew. Chem., Int. Ed., 1998, 37, 1608–1633; (b) J.
Uppenberg, M. T. Hansen, S. Patkar and T. A. Jones, Structure
(Cambridge, MA, U. S.), 1994, 293–308; (c) J. C. Rotticci-Mulder,
M. Gustavsson, M. Holmquist, K. Hult and M. Martinelle, Protein
Expression Purif., 2001, 21, 386–392.
discussions and D. Klutt for assistance in the synthesis of
¨
substrates.
12 (a) F. Molinari, K. S. Cavenago, A. Romano, D. Romano and R.
Gandolfi, Tetrahedron: Asymmetry, 2004, 15, 1945–1947; (b) A.
Mezzetti, C. Keith and R. J. Kazlauskas, Tetrahedron: Asymmetry,
2003, 14, 3917–3924; (c) U. T. Bornscheuer and R. J. Kazlauskas,
Hydrolases in Organic Synthesis, Wiley-VCH, Weinheim, 2005.
13 M. T. Reetz, M. Bocola, J. D. Carballeira, D. Zha and A. Vogel,
Angew. Chem., Int. Ed., 2005, 44, 4192–4196.
14 (a) M. T. Reetz, L.-W. Wang and M. Bocola, Angew. Chem., Int.
Ed., 2006, 45, 1236–1241; Erratum 2494; (b) C. M. Clouthier,
M. M. Kayser and M. T. Reetz, J. Org. Chem., 2006, 71,
8431–8437; (c) M. T. Reetz, J. J.-P. Peyralans, A. Maichele, Y.
Fu and M. Maywald, Chem. Commun., 2006, 4318–4320.
15 (a) S. Bartsch, R. Kourist and U. T. Bornscheuer, Angew. Chem.,
Int. Ed., 2008, 47, 1508–1511; (b) L. Liang, J. Zhang and Z. Lin,
Microb. Cell Fact., 2007, 6, 36.
Notes and references
1 General reviews of directed evolution: (a) K. M. Arndt and K. M.
Muller, Protein Engineering Protocols (Methods in Molecular
¨
Biology), Humana Press, Totowa, New Jersey, 2007, vol. 352; (b)
F. H. Arnold and G. Georgiou, Directed Enzyme Evolution:
Screening and Selection Methods, Humana Press, Totowa, New
Jersey, 2003, vol. 230; (c) N. J. Turner, Trends Biotechnol., 2003,
21, 474–478; (d) S. V. Taylor, P. Kast and D. Hilvert, Angew.
Chem., Int. Ed., 2001, 40, 3310–3335; (e) S. Brakmann and
A. Schwienhorst, Evolutionary Methods in Biotechnology – Clever
Tricks for Directed Evolution, Wiley-VCH, Weinheim, 2004; (f) S.
Lutz and W. M. Patrick, Curr. Opin. Biotechnol., 2004, 15,
291–297; (g) E. G. Hibbert, F. Baganz, H. C. Hailes, J. M. Ward,
G. J. Lye, J. M. Woodley and P. A. Dalby, Biomol. Eng., 2005
22, 11–19; (h) S. B. Rubin-Pitel and H. Zhao, Comb. Chem.
High Throughput Screening, 2006, 9, 247–257; (i) J. Kaur and
R. Sharma, Crit. Rev. Biotechnol., 2006, 26, 165–199;
16 Details of QuikChanget protocol of Stratagene: H. H. Hogrefe, J.
Cline, G. L. Youngblood and R. M. Allen, BioTechniques, 2002,
33, 1158–1165.
17 For examples of focused libraries,1 see list in Electronic Supple-
mentary Information.
ꢀc
This journal is The Royal Society of Chemistry 2008
5504 | Chem. Commun., 2008, 5502–5504