Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
3
a)
K. M. Engle, J.-Q. Yu, Synthesis 2012, 44, 1778-1791. d) P.
Thansandote, M. Lautens, Chem. Eur. J. 2009, 15, 5874-5883.
For example: a) T. Okada, A. Sakai, T. Hinoue, T. Satoh, Y.
Hayashi, S. Kawauchi, K. Chandrababunaidu, M. Miura
J. Org. Chem. 2018, 83, 5639-5649. b) R. Morioka, K. Nobushige,
T. Satoh, K. Hirano, M. Miura, Org. Lett. 2015, 17, 3130-3133. c)
Y. Yokoyama, Y. Unoh, R. A. Bohmann, T. Satoh, K. Hirano, C.
Bolm, M. Miura, Chem. Lett. 2015, 44, 1104-1106. d) T. Iitsuka, K.
Hirano, T. Satoh, M. Miura, J. Org. Chem. 2015, 80, 2804-2814. e)
M. Fukui, Y. Hoshino, T. Satoh, M. Miura, K. Tanaka, Adv. Synth.
Catal. 2014, 356, 1638-1644. See also reviews: f) T. Satoh, M.
Miura, Chem. Eur. J. 2010, 16, 11212-11222. g) T. Satoh, M.
Miura, Synthesis, 2010, 3395-3409.
For Rh(III)-catalyzed oxidative coupling of benzamides with
alkenes, see: a) Y. Qiu, W.-J. Kong, J. Struwe, N. Sauermann, T.
Rogge, A. Scheremetjew, L. Ackermann, Angew. Chem., Int.
Ed. 2018, 57, 5828-5832. b) D. Wang, X.Yu, X. Xu, B. Ge, X.
Wang, Y. Zhang, Chem. Eur. J. 2016, 22, 8663-8668. c) S. Rakshit,
C. Grohmann, T. Besset, F. Glorius, J. Am. Chem. Soc. 2011, 133,
2350-2353. d) F. Patureau, T. Besset, F. Glorius, Angew. Chem.,
Int. Ed. 2011, 50, 1064-1067. e) F. Wang, G. Song, X. Li, Org. Lett.
2010, 12, 5430-5433.
O
[CpERhCl2]2 (0.01 mmol)
O
H
Me
N
F
AgSbF6 (0.2 mmol)
6
Me
H
N
+
H
CO2Me
Ag2CO3 (1 mmol)
AcOH (1 mmol)
tBuOH (3 mL)
F
CO2Me
40 oC, Ar, 24 h
1a (0.5 mmol)
7 (0.5 mmol)
8 (55%)
b)
O
[CpERhCl2]2 (0.01 mmol)
AgSbF6 (0.2 mmol)
O
H
Me
N
H
Me
Me
N
+
H
CO2Me
Ag2CO3 (1 mmol)
AcOH (1 mmol)
tBuOH (3 mL)
7
Me
CO2Me
40 oC, Ar, 24 h
1a (0.5 mmol)
9 (0.5 mmol)
10 (<10%)
Scheme 4.
In summary, we have demonstrated that isoindolinone
derivatives possessing trifluoromethyl group can be
a
constructed from readily available benzamides and methyl 2-
trifluoromethylacrylate. The oxidative coupling reaction of
these substrates proceeds efficiently under rhodium catalysis
through ortho C–H bond cleavage of benzamides. The choice
of ligand for the rhodium(III) catalyst has been found to be
important to promote the oxidative coupling. However, the
exact role of ligand is obscure at the present stage. Work is
underway for further understanding the effect of ligand.
This work was partly supported by JSPS KAKENHI
Grant Numbers 20H02745 and 18K19083 to T.S. and JSPS
KAKENHI Grant Number JP18H04627 to Y.U.
8
For non-annulative, redox-neutral coupling of benzamides with 2-
trifluoromethylacrylic acid, see: a) R. Yoshimoto, Y. Usuki, T.
Satoh, Chem. Asian J. 2020, 15, 802-806. For b-selective arylation
and alkenylation of 2-trifluoromethylacrylic acid, see: b) R.
Yoshimoto, Y. Usuki, T. Satoh, Chem. Lett. 2019, 48, 461-464.
Y. Shibata, K. Tanaka, Angew. Chem. Int. Ed. 2011, 50, 10917-
10921.
In this case, a higher amount of oxidative coupling product 3a was
formed than that of AgSbF6, which can act as an oxidant. Therefore,
it is possible that, at least in part, alkene 2 acted as a hydrogen
accepter in cooperation with AcOH. Previously, we proposed a
9
10
similar reoxidation process through oxidative addition of
a
carboxylic acid toward a low valent metal species, insertion of
unsaturated compound into a hydride-metal bond, and protonation:
K. Hirosawa, Y. Usuki, T. Satoh, Adv. Synth. Catal. 2019, 361,
5253-5257.
Supporting Information is available electronically on J-
STAGE.
11
Another pathway via a nitrogen coordination mode, especially in
cases using secondary amides 1 cannot be excluded: T. K. Hyster,
T. Rovis, J. Am. Chem. Soc. 2010, 132, 10565-10569.
References and Notes
1
R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014,
57, 5845-5859.
2
a) N. Kanamitsu, T. Osaki, Y. Itsuji, M. Yoshimura, H. Tsujimoto,
M. Soga, Chem. Pharm. Bull. 2007, 55, 1682-1688. b) R. Brenk, E.
A. Meyer, K. Reuter, M. T. Stubbs, G. A. Garcia, F. Diederich, G.
Klebe, J. Mol. Biol. 2004, 338, 55-75. c) J. Wrobel, A. Dietrich, S.
A. Woolson, J. Millen, M. McCaleb, M. C. Harrison, T. C.
Hohman, J. Sredy, D. Sullivan, J. Med. Chem. 1992, 35, 4613-4627.
d) T. Wada, R. Nakajima, E. Kurihara, S. Narumi, Y. Masuoka, G.
Goto, Y. Saji, N. Fukuda, Japan. J. Pharmacol. 1989, 49, 337-349.
a) H.-Y. Zhang, W. Huo, C. Ge, J. Zhao, Y. Zhang, Synlett 2017,
28, 962-965. b) K. Shen, Q. Wang, Org. Chem. Front. 2016, 3,
222-226.
For selected reviews for C–H functionalization, see: a) C.
Sambiagio, D. David Schöbauer, R. Blieck, T. Dao-Huy, G.
Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord,
T. Besset, B. U. W. Maes, M. Schnürch, Chem. Soc. Rev. 2018, 47,
6603-6743. b) M. Gulías, J. L. Mascareñas, Angew. Chem., Int. Ed.
2016, 55, 11000-11019. c) Z. Chen, B. Wang, J. Zhang, W. Yu, Z.
Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107-1295. d) G. Song,
X. Li, Acc. Chem. Res. 2015, 48, 1007-1020. e) J. Ye, M. Lautens,
Nature Chem. 2015, 7, 863-870. f) M. Miura, T. Satoh, K. Hirano,
Bull. Chem. Soc. Jpn. 2014, 87, 751-764. g) S. De Sarkar, W. Liu,
S. I. Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356,
1461-1479. h) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5,
369-375. i) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman,
Acc. Chem. Res. 2012, 45, 814-825. j) K. M. Engle, T.-S. Mei, M.
Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788-802. k) S. H. Cho,
SJ. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068-
5083. l) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel, J.-Q. Yu,
Chem. Soc. Rev. 2009, 38, 3242-3272.
3
4
5
For selected reviews, see: a) M. Gulías, J. L. Mascareñas, Amgew.
Chem., Int. Ed. 2016, 55, 11000-11019. b) N. Yoshikai, Y. Wei,
Asian J. Org. Chem. 2013, 2, 466-478. c) T.-S. Mei, L. Kou, S. Ma,