9520
In summary, a modular approach has been utilized to arrive at variously substituted
polystyrene-bound cyclo-BINOLs via attachment of precursor ligands to formylated commercial
samples of (1 and 2% cross-linked) polystyrene beads. Efficacy has been demonstrated for
conversions of sulfides to nonracemic sulfoxides, as well as in 1,2-additions of Et2Zn to aryl
aldehydes. The ligands are easily handled, are reusable without significant loss of efficiency, and
provide for very simple workup procedures which minimize losses of material.14 With these
results in hand, we can now focus on the corresponding polymer-supported (substituted)
cyclo-NOBIN15 and cyclo-BINAP16 systems, reports on which will be submitted in due course.
Acknowledgements
Financial support provided by the NIH (GM 56764) is warmly acknowledged.
References
1. Noyori, R.; Tomino, I.; Tanimoto, Y. J. Am. Chem. Soc. 1979, 101, 3129.
2. (a) In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993. (b) Noyori, R. Asymmetric
Catalysis in Organic Synthesis; Wiley: New York, 1994.
3. (a) Huang, W.-S.; Pu, L. Tetrahedron Lett. 2000, 41, 145. Huang, W.-S.; Pu, L. J. Org. Chem. 1998, 64, 4222.
Huang, W.-S.; Hu, Q.-S.; Pu, L. J. Org. Chem. 1998, 64, 2798. Huang, W.-S.; Hu, Q.-S.; Pu, L. J. Org. Chem.
1998, 63, 1364. Hu, Q.-S.; Huang, W.-S.; Vitharana, D.; Zheng, X.-F.; Pu, L. J. Am. Chem. Soc. 1997, 119,
12454. (b) Huang, W.-S.; Hu, Q.; Pu, L. J. Org. Chem. 1999, 64, 7940.
4. For related studies on supported BINOLs, see Kobayashi, S.; Kusakabe, K.; Ishitani, H. Org. Lett. 2000, 2, 1225.
Takata, T.; Furusho, Y.; Murakawa, K.; Endo, T.; Matsuoka, H.; Hirasa, T.; Matsuo, J.; Sisido, M. J. Am.
Chem. Soc. 1998, 120, 4530. Yamago, S.; Furukawa, M.; Azuma, A.; Yoshida, J. Tetrahedron Lett. 1998, 39,
3783.
5. Yang, X.-W.; Sheng, J.-H.; Da, C.-S.; Wang, H.-S.; Su, W.; Wang, R.; Chan, A. S. C. J. Org. Chem. 2000, 65,
295. Zhang, F.; Yip, C.; Cao, R.; Chan, A. Tetrahedron: Asymmetry 1997, 8, 585.
6. Lipshutz, B. H.; Shin, Y.-J. Tetrahedron Lett. 1998, 39, 7017.
7. The resin used was a commercially available copolymer of styrene–divinylbenzene in the form of 200–400 mesh
resin beads containing 1 or 2% divinylbenzene.
8. Frechet, J. M.; Schuerch, C. J. Am. Chem. Soc. 1971, 93, 492.
9. Dumont, W.; Poulin, J.; Dang, T.; Kagan, H. J. Am. Chem. Soc. 1973, 95, 8295.
10. (a) Komatsu, N.; Hashizume, M.; Sugita, T.; Uemura, S. J. Org. Chem. 1993, 58, 4529. (b) Mislow, K.; Green,
M. M.; Laur, P.; Melillo, J. T.; Simmons, T.; Ternary, A. L. J. Am. Chem. Soc. 1965, 87, 1958. (c) Jacobus, J.;
Mislow, K. J. Am. Chem. Soc. 1967, 89, 5228.
11. For a review on 1,2-additions of Et2Zn to aldehydes, see Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833.
12. Bolm, C.; Dabard, O. Synlett. 1999, 360.
13. The (R) stereochemical assignments for the precursors to 4A–F and 11 were confirmed by comparison of the CD
spectrum of 11 with that for (S)-BINOL; cf. Smrcina, M.; Lorenc, M.; Hanus, V.; Sedmera, P.; Kocovsky, P. J.
Org. Chem. 1992, 57, 1917.
14. Typical procedure for the synthesis of polystyrene-bound cyclo-BINOLs (e.g. 4B). To a well-dried 100 mL round
bottom flask was added formylated resin (1.82 g, 1.83 mmol) and the cyclo-BINOL 3 (R=Ph, R%=H; 1.0 g, 1.82
mmol). Benzene (50 mL) and p-toluenesulfonic acid (7 mg) were added to the reaction flask and the mixture was
refluxed with continuous removal of water with a Dean–Stark trap. After 24 h, the reaction flask was cooled. The
resin was collected on
a glass filter and washed with dioxane, acetone, N,N-dimethylformamide,
dichloromethane, and finally methanol. There was obtained 2.97 g (91%) of polystyrene-bound (R)-cyclo-BINOL
4B after drying at 60°C under high vacuum for 10 h.
Typical procedure for asymmetric oxidation of aryl alkyl sulfides (e.g. 7 to 9). Polystyrene-bound (R)-cyclo-