Journal of the American Chemical Society
Page 4 of 5
53, 10992. (l) Hesse, M. J.; Essafi, S.; Watson, C. G.; Harvey, J. N.; Hirst,
complete stereospecificity. Indeed, the addition of an organolith-
ium to form a boronate complex increases the nucleophilicity of the
stable boronic ester by 7 to 10 orders of magnitude. Importantly,
this process provides access to a broad array of functionalities, in-
cluding quaternary all-carbon stereocentres and allylic fluoro- and
trifluoromethyl moieties. We envisage that the continued applica-
tion of boronate complexes10e will provide access to an array of new
enantioenriched functionalities which are otherwise difficult to ob-
tain.
D.; Willis, C. L.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2014, 53, 6145.
(4) W. Hoffman, R.; Weidmann, U. J. Organomet. Chem. 1980, 195,
137.
(5) For a review, see: (a) Chabaud, L.; James, P.; Landais, Y. Eur. J.
Org. Chem. 2004, 3173. For selected examples, see: (b) Hosomi, A.; Sa-
kurai, H. Tetrahedron Lett. 1976, 17, 1295. (c) Huang, H.; Panek, J. S. J.
Am. Chem. Soc. 2000, 122, 9836. (d) Liu, P.; Binnun, E. D.; Schaus, J. V.;
Valentino, N. M.; Panek, J. S. J. Org. Chem. 2002, 67, 1705. (e) Huang, H.;
Panek, J. S. Org. Lett. 2003, 5, 1991.
1
2
3
4
5
6
7
(6) For a review, see: (a) Gung, B. W. in Organic Reactions, Vol. 64
(Ed.: L. E. Overman), Wiley, Hoboken, 2004, 1. For a recent example, see:
(b) Schmidtmann, E. S.; Oestreich, M. Angew. Chem. Int. Ed. 2009, 48,
4634.
(7) (a) Kacprzynski, M. A.; May, T. L.; Kazane, S. A.; Hoveyda, A. H.
Angew. Chem. Int. Ed. 2007, 46, 4554. (b) Li, D.; Tanaka, T.; Ohmiya, H.;
Sawamura, M. Org. Lett. 2010, 12, 3344. (c) Aggarwal, V. K.; Binanzer,
M.; de Ceglie, M. C.; Gallanti, M.; Glasspoole, B. W.; Kendrick, S. J. F.;
Sonawane, R. P.; Vázquez-Romero, A.; Webster, M. P. Org. Lett. 2011, 13,
1490. (d) Hensel, A.; Oestreich, M. Chem. Eur. J. 2015, 21, 9062. (e) Ya-
suda, Y.; Nagao, K.; Shido, Y.; Mori, S.; Ohmiya, H.; Sawamura, M. Chem.
Eur. J. 2015, 21, 9666.
(8) (a) Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005,
127, 16034. (b) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J.
P. J. Am. Chem. Soc. 2014, 136, 17918. (c) Edelstein, E. K.; Namirembe,
S.; Morken, J. P. J. Am. Chem. Soc. 2017, 139, 5027. (d) Zhou, Q.; Srinivas,
H. D.; Zhang, S.; Watson, M. P. J. Am. Chem. Soc. 2016, 138, 11989.
(9) (a) Lombardo, M.; Morganti, S.; Tozzi, M.; Trombini, C. Eur. J. Org.
Chem. 2002, 2823. (b) Ondrusek, B. A.; Park, J. K.; McQuade, D. T. Synlett
2014, 25, 239. (c) van der Mei, F. W.; Miyamoto, H.; Silverio, D. L.; Hov-
eyda, A. H. Angew. Chem. Int. Ed. 2016, 55, 4701.
(10) (a) Larouche-Gauthier, R.; Elford, T. G.; Aggarwal, V. K. J. Am.
Chem. Soc. 2011, 133, 16794. (b) Mohiti, M.; Rampalakos, C.; Feeney, K.;
Leonori, D.; Aggarwal, V. K. Chem. Sci. 2014, 5, 602. (c) Sandford, C.;
Rasappan, R.; Aggarwal, V. K. J. Am. Chem. Soc. 2015, 137, 10100. (d)
Liu, X.; Deaton, T. M.; Haeffner, F.; Morken, J. P. Angew. Chem. Int. Ed.
2017, 56, 11485. For a review, see: (e) Sandford, C.; Aggarwal, V. K.
Chem. Commun. 2017, 53, 5481.
8
9
ASSOCIATED CONTENT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website.
Detailed experimental procedures, kinetics data, and
characterization data for new compounds (PDF).
AUTHOR INFORMATION
Corresponding Author
*v.aggarwal@bristol.ac.uk
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank EPSRC (EP/I038071/1), ERC (670668) and Deutsche
Forschungsgemeinschaft (SFB 749, project B1) for financial sup-
port. C.G.-R. thanks the Ramón Areces Foundation and P.L. thanks
Xunta de Galicia for postdoctoral fellowships. C.S. thanks the Uni-
versity of Bristol for a PhD scholarship and K.F. thanks the EPSRC
Bristol Chemical Synthesis Doctoral Training Centre for a student-
ship (EP/L015366/1). We thank E. M. Wöllner and P. Gänsheimer
for initial kinetic results, and A. R. Ofial for helpful discussions.
(11) More electron rich boronate complexes are more prone to SET path-
ways than polar pathways (see ref 10a) which could account for the higher
selectivity observed with 3,5-(CF3)2C6H3Li and naphthylLi vs 4-
MeOC6H4Li.
REFERENCES
(12) (a) Mizuta, S.; Engle, K. M.; Verhoog, S.; Galicia-López, O.;
O’Duill, M.; Médebielle, M.; Wheelhouse, K.; Rassias, G.; Thompson, A.
L.; Gouverneur, V. Org. Lett. 2013, 15, 1250. For examples using Cu catal-
ysis, see: (b) Mizuta, S.; Galicia-López, O.; Engle, K. M.; Verhoog, S.;
Wheelhouse, K.; Rassias, G.; Gouverneur, V. Chem. Eur. J. 2012, 18, 8583.
(c) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem.
Int. Ed. 2012, 51, 4577. (d) Mizuta, S.; Verhoog, S.; Wang, X.; Shibata, N.;
Gouverneur, V.; Médebielle, M. J. Fluor. Chem. 2013, 155, 124.
(13) Pacheco, M. C.; Purser, S.; Gouverneur, V. Chem. Rev. 2008, 108,
1943.
(14) (a) Greedy, B.; Paris, J.-M.; Vidal, T.; Gouverneur, V. Angew.
Chem. Int. Ed. 2003, 42, 3291. (b) Tredwell, M.; Tenza, K.; Pacheco, M.
C.; Gouverneur, V. Org. Lett. 2005, 7, 4495. (c) Sawicki, M.; Kwok, A.;
Tredwell, M.; Gouverneur, V. Beilstein J. Org. Chem. 2007, 3, 34.
(15) See Supporting Information for full details of alternative diastere-
omers, and analytical determination of γ/α and dr selectivities.
(16) Leonori, D.; Aggarwal, V. K. Acc. Chem. Res. 2014, 47, 3174.
(17) (a) Mayr, H.; Patz, M. Angew. Chem. Int. Ed. 1994, 33, 938. (b)
Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf,
B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem.
Soc. 2001, 123, 9500. (c) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem.
Res. 2003, 36, 66. (d) Berionni, G.; Maji, B.; Knochel, P.; Mayr, H. Chem.
Sci. 2012, 3, 878. (e) Berionni, G.; Leonov, A. I.; Mayer, P.; Ofial, A. R.;
Mayr, H. Angew. Chem. Int. Ed. 2015, 54, 2780.
(1) (a) Hoffmann, R. W. Angew. Chem. Int. Ed. 1982, 21, 555. (b) Den-
mark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763. (c) Kennedy, J. W. J.; Hall,
D. G. Angew. Chem. Int. Ed. 2003, 42, 4732. (d) Marshall, J. A. J. Org.
Chem. 2007, 72, 8153. (e) Marek, I.; Sklute, G. Chem. Commun. 2007,
1683. (f) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013,
113, 5595.
(2) For reviews, see: (a) Hall, D. G. Synlett 2007, 11, 1644. (b) Lachance,
H.; Hall, D. G. in Organic Reactions, Vol. 73 (Ed.: S. E. Denmark), Wiley,
Hoboken, 2008, 1. (c) Huo, H.-X.; Duvall, J. R.; Huang, M.-Y.; Hong, R.
Org. Chem. Front. 2014, 1, 303. (d) Diner, C.; Szabó, K. J. J. Am. Chem.
Soc. 2017, 139, 2.
(3) For selected recent examples, see: (a) Kyne, R. E.; Ryan, M. C.;
Kliman, L. T.; Morken, J. P. Org. Lett. 2010, 12, 3796. (b) Chen, M.; Roush,
W. R. Org. Lett. 2010, 12, 2706. (c) Chen, M.; Roush, W. R. J. Am. Chem.
Soc. 2013, 135, 9512. (d) Alam, R.; Das, A.; Huang, G.; Eriksson, L.; Himo,
F.; Szabó, K. J. Chem. Sci. 2014, 5, 2732. (e) Alam, R.; Vollgraff, T.; Eriks-
son, L.; Szabó, K. J. J. Am. Chem. Soc. 2015, 137, 11262. (f) Li, Y.;
Chakrabarty, S.; Studer, A. Angew. Chem. Int. Ed. 2015, 54, 3587. (g) Lee,
K.; Silverio, D. L.; Torker, S.; Robbins, D. W.; Haeffner, F.; van der Mei,
F. W.; Hoveyda, A. H. Nat. Chem. 2016, 8, 768. (h) van der Mei, F. W.;
Qin, C.; Morrison, R. J.; Hoveyda, A. H. J. Am. Chem. Soc. 2017, 139,
9053. (i) Althaus, M.; Mahmood, A.; Suárez, J. R.; Thomas, S. P.; Ag-
garwal, V. K. J. Am. Chem. Soc. 2010, 132, 4025. (j) Chen, J. L.-Y.; Scott,
H. K.; Hesse, M. J.; Willis, C. L.; Aggarwal, V. K. J. Am. Chem. Soc. 2013,
135, 5316. (k) Chen, J. L.-Y.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2014,
(18) Calculated by eq. (1) for typical electrophiles with -5 < E < 2.
(19) Feeney, K.; Berionni, G.; Mayr, H.; Aggarwal, V. K. Org. Lett.
2015, 17, 2614.
ACS Paragon Plus Environment