C O M M U N I C A T I O N S
(12) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. ReV. 2004,
248, 2201.
(13) Heinekey, D. M.; Lledas, A.; Lluch, J. M. Chem. Soc. ReV. 2004, 33, 175.
(14) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. Inorg. Chem. 1987, 26,
971.
(15) Zhao, J.; Goldman, A. S.; Hartwig, J. S. Science 2005, 307, 1080.
(16) Spikes, G. H.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc. 2005, 127,
12232.
(17) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science
2006, 314, 1124.
(18) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G.
Science 2007, 316, 439.
(19) Spikes, G. H.; Peng, Y.; Fettinger, J. C.; Power, P. P. Z. Anorg. Allg. Chem.
2006, 632, 1005.
(20) All manipulations were carried out under anaerobic and anhydrous
conditions. (a) 1. [Ar′Sn(µ-H)]2: A solution of SnAr′2 (1.15 g, 1.26 mmol)
in toluene (50 mL) was stirred at 65° for 2 h under a H2 atmosphere to
give a dark green solution. The mixture was concentrated to ca. 10 mL
under vacuum which afforded orange crystals of 1 upon cooling to ca.-
16°C. Yield: 39%. 1H NMR (C6D6): 0.93 (d, 6H, 3JHH ) 6.6 Hz, CH(CH3)2,
Figure 1. Thermal ellipsoid (30%) drawing of 3. Hydrogen atoms, except
those at nitrogen, are not shown for clarity.
3
3
The addition of an excess of dry ammonia to a dark blue solution
of SnAr′2 in toluene rapidly discharged the color. Concentration of
the solution produced colorless crystals of the new species 3 (eq 4).20c
X-ray crystallography25 afforded a dimeric structure as illustrated in
Figure 1. The tin centers were symmetrically bridged by the NH2
ligands in which the two hydrogens were located in the electron density
map. The rhombohedral Sn2N2 core is planar with the angles NSnN
) 76.38(5)° and SnNSn ) 103.62(5)°. The tins have terminally bound
Ar′ ligands which yield trigonal pyramidal coordination as shown by
the sum of the angles at tin of 266.16°. The Sn-N bridging distances
(2.1913(13) and 2.1918(13) Å) are in good agreement with the reported
Sn-N distance 2.21 Å in {Ar*Sn(µ-NH2)}2 (Ar* ) C6H3-2,6(C6H2-
2,4,6-Pri3)2)26 which differs from 3 in that it has a bulkier terphenyl
ligand. The IR spectrum displayed two weak sharp bands at 3357 and
3260 cm-1 that are due to the two N-H stretching modes of the -NH2
groups. These frequencies are close to those at 3370 and 3290 cm-1
observed for [Ar*Sn(µ-NH2)]2.26 The reaction probably proceeds in
the same manner as that described in eq 5 to generate an Ar′2Sn(H)NH2
intermediate which eliminates Ar′H to afford 3.
1.02 (d, 6H, JHH ) 6.6 Hz, CH(CH3)2, 1.04 (d, 6H, JHH ) 6.6 Hz,
CH(CH3)2, 1.11 (d, 6H, 3JHH ) 6.6 Hz, CH(CH3)2), 3.00 (overlap septets,
4H, CH(CH3)2), 7.03 (d, 4H,3 JHH ) 7.5 Hz, m-DippH), 7.10 (m, overlap
3
1
ArH), 7.30 (t, 2H, JHH ) 7.5 Hz, p-DippH), 9.13 (s, 1H, JSn-H ) ca. 89
Hz, Sn-H). 119Sn{1H} NMR: δ 657. (b) 2. [Ar′Sn(µ-D)]2: A solution of
SnAr′2 (1.05 g, 1.15 mmol) in toluene (50 mL) was stirred at 65 °C for 2 h
under a D2 atmosphere to give a dark green solution. The mixture was
concentrated to ca. 10 mL under vacuum which afforded orange crystals
of 2 upon cooling to ca.-16 °C. Yield: 45%. 1H NMR (C6D6): 0.93 (d,
3
3
6H, JHH ) 6.6 Hz, CH(CH3)2, 1.02 (d, 6H, JHH ) 6.6 Hz, CH(CH3)2),
3
3
1.04 (d, 6H, JHH ) 6.6 Hz, CH(CH3)2), 1.11 (d, 6H, JHH ) 6.6 Hz,
CH(CH3)2), 3.00 (overlap septets, 4H, CH(CH3)2), 7.03 (d, 4H, 3JHH ) 7.5
Hz, m-DippH 7.10-7.28 (m, overlap ArH),) 2H NMR (C7H8): 8.98 (s, 1D).
119Sn{1H} NMR (C7D8): δ 610. (c) 3. [Ar′Sn(µ-NH2)]2: To a deep blue
solution of SnAr′2 (0.45g, 0.5 mmol) in toluene (50 mL) at-78° was added
several drops of liquid ammonia. The solution became light yellow.
Warming to room temperature produced a colorless solution, which was
concentrated to ca. 30 mL under reduced pressure to give colorless crystals
that were identified as 3 on the basis of NMR spectroscopy and X-ray
crystallography. Yield: 55%. Mp: 120-125°. 1H NMR (C7D8): δ 0.72 (s,
2H, NH2), 1.48 (d, 12H, 3JHH ) 6.6 Hz, CH(CH3)2), 1.63 (d, 12H, 3JHH
)
6.6 Hz, CH(CH3)2), 3.42 (septets, 4H, CH(CH3)2), 7.48 (t, 2H, 3JHH ) 6.6
3
3
Hz, p-DippH), 7.58 (t, 1H, JHH ) 6.6 Hz, p-C6H3), 7.65 (d, 4H, JHH
)
6.6 Hz, m-Dipp)), 7.68 (d, 2H,3 JHH )7.5 Hz, m-C6H3). 13C{1H}
NMR(C7D8): 24.31 (CH(CH3)2), 26.55 (CH(CH3)2), 31.22 (CH(CH3)2),
126.45 (p-C6H3), 128.91 (p-Dipp), 129.54 (i-Dipp), 130.24 (m-C6H3), 138.17
(i-Dipp), 147.15 (o-C6H3), 157.42 (i-C6H3). 119Sn{1H} NMR (C7D8): δ
280.26. IR (Nujol): ν 3357, 3260 cm-1 (ν NH2, weak). (d) 4. SnAr#2: A
purple solution of SnAr#2 (0.75 g, 1 mmol) in toluene (50 mL) was stirred
at 70° for 6 days under a H2 atmosphere. No color change was observed.
The solvent was pumped off, and 1H and 119Sn NMR spectroscopy showed
that it was the reactant SnAr#2. Recovered yield >80%. 1H NMR (C6D6):
1.90 (s, 12H, o-CH3), 2.21 (s, 6H, p-CH3), 6.77 (s, 4H, m-Mes), 6.80 (d,
2H, JHH ) 7.5 Hz, m-C6H3), 7.12 (t, 1H, JHH ) 7.8 Hz, p-C6H3). 119Sn
{1H} NMR: δ 635.23. (e) 5. Sn{N(SiMe3)2}2: An orange solution of
Sn{N(SiMe3)2}2 (1.09 g, 2.5 mmol) in toluene (50 mL) was stirred at 70°
for 3 days under a H2 atmosphere. No color change was observed. The
solvent was pumped off, and 1H, 119Sn NMR spectroscopy indicated
unchanged Sn{N(SiMe3)2}2. Recovered yield >85%. 1H NMR (C6D6): 0.28
(s, 18H, -CH3). 119Sn{1H} NMR: δ 767.27a,b(f) Ar′H (from mother liquor):
In summary we have shown that the stannylenene SnAr′219 reacts
with H2 or NH3 to afford the products 1 or 3. The corresponding
lack of reactivity of H2 toward SnAr#2 or Sn{N(SiMe3)2}2 suggests
that the ability of SnAr′2 to activate H2 may be associated with
increased triplet character in its ground state. The reaction differs
from that of carbenes in that an arene is eliminated. However the
initial step probably proceeds according to Scheme 1 (E ) Sn).
Acknowledgment. We thank the U.S. Department of Energy
Office of Basic Energy Sciences DE-FG02-07ER46475 for financial
support. B.D.E. thanks the NSERC of Canada for a postdoctoral
fellowship. We thank Dr. Jeff De Ropp and Prof. R. A. Andersen
for helpful discussions.
3
1H NMR (C6D6): δ 1.11 (d, 6H, JHH ) 6.6 Hz, CH(CH3)2), 1.14 (d, 6H,
3JHH ) 6.6 Hz, CH(CH3)2), 2.90 (septets, 4H, CH(CH3)2), 6.89 (s, i-C6H3),
3
7.04 (s, i-Dipp), 7.09 (d, 4H, m-C6H3), 7.10 (d, 4H, JHH ) 6.6 Hz,
m-Dipp)), 7.22 (t, 1H, 3JHH ) 7.5 Hz, p-C6H3), 7.31 (t, 4H, 3JHH ) 6.6 Hz,
p-Dipp). (g) Ar′D (mother liquor): 1H NMR (C6D6): δ 1.11 (d, 6H, 3JHH
)
6.6 Hz, CH(CH3)2), 1.14 (d, 6H, 3JHH ) 6.6 Hz, CH(CH3)2), 2.89 (septets,
3
4H, CH(CH3)2), 7.04 (s, i-Dipp), 7.09 (d, 4H, m-C6H3), 7.10 (d, 4H, JHH
) 6.6 Hz, m-Dipp)), 7.22 (t, 1H, 3JHH ) 7.5 Hz, p-C6H3), 7.31 (t, 4H, 3JHH
Supporting Information Available: Crystallographic data for 3
(CIF), unit cell parameters for 1 and 2. This material is available free
) 6.6 Hz, p-Dipp). 2H NMR (C6H14): 6.98 (s, i-C6H3).
(21) Rivard, E.; Fischer, R. C.; Wolf, R.; Peng, Y.; Merrill, W. A.; Schley,
N. D.; Zhu, Z.; Pu, L.; Fettinger, J. C.; Teat, S. J.; Nowik, I.; Herber, R. H.;
Takagi, N.; Nagase, S.; Power, P. P. J. Am. Chem. Soc. 2007, 129, 16197.
(22) Eichler, B. E.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 8785.
(23) Simons, R. S.; Pu, L.; Olmstead, M. M.; Power, P. P. Organometallics
1997, 16, 1920.
References
(1) Halpern, J. AdV. Inorg. Chem. 1956, 11, 301.
(2) Brothers, P. J. Prog. Inorg. Chem. 1981, 28, 1.
(3) James, B. R. Homogenous Hydrogenation, Wiley, New York, 1973.
(4) Kubas, G. J. AdV. Inorg. Chem. 2001, 56, 127.
(5) Osborn, J.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A
1966, 1711.
(6) Kubas, G. J.; Ryan, R. R.; Swanson, B. L.; Vergamini, P. J.; Wasserman,
H. J. Am. Chem. Soc. 1984, 106, 451.
(7) Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes; Kluwer: New York,
2001.
(8) Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95.
(9) Jessop, P. G.; Morris, R. H. Coord. Chem. ReV. 1982, 121, 155.
(10) Heinekey, D. M.; Oldham, W. J. Chem. ReV. 1993, 93, 913.
(11) Crabtree, R. H. In Modern Coordination Chemistry: The Legacy of Joseph
Chatt; Leigh, G. J., Winterton, N., Eds.; Royal Society of Chemistry:
Cambridge, 2002; p 31.
(24) Fjelberg, T.; Hope, H.; Lappert, M. F.; Power, P. P.; Thorne, A. J. J. Chem.
Soc., Chem. Commun. 1983, 639.
(25) Crystal Data for 3 · 4PhMe 90(2) K with Mo KR (λ ) 0.710 73 Å), fw )
j
1433.20, triclinic, P1, colorless block, a ) 12.0051(6) Å, b ) 13.3719(7)
Å, c ) 13.6933(7) Å, R ) 110.5722(7)°, ꢀ ) 102.3158(7)°, γ )
103.5991(7)°, V ) 1891.60(17) Å3, Z ) 1, 21 146 total reflections, 8667[I
> 2σ(I)] R1 ) 0.0220, wR2 ) 0.0552, R indices (all data) R1 ) 0.0268,
wR2 ) 0.0578.
(26) Stanciu, C.; Hino, S.; Stender, M.; Richards, A. F.; Olmstead, M. M.; Power,
P. P. Inorg. Chem. 2005, 44, 2774.
(27) (a) Wrackmeyer, B. In UnkonVentionelle Wechselwirkungen in der Chemie
metallischer Elemente; Krebs, B., Ed.; VCH: Weinheim, 1992; pp 111-
124. (b) Wrackemeyer, B. Ann. Rep. NMR Spectrosc. 1999, 38, 20.
JA805358U
9
J. AM. CHEM. SOC. VOL. 130, NO. 37, 2008 12269