2
6
On the other hand, molecular oxygen is a natural,
cheap, and eco-friendly oxidant, which was applied in
the oxidation of allylic alcohols as terminal oxidant with
metallic catalyst. It is worth noting that Z/E-isomerization
has also been observed under aerobic oxidation conditions.
For example, Christmann and co-workers have reported a
copper-catalyzed aerobic oxidation/isomerization protocol
of Z-allylic alcohols affording the completely isomerized
products E-R,β-unsaturated aldehydes under mild condi-
1
7
18
19
20
transition-metal catalysts such as Pd, Pt, Au, Ru,
25
2
1
22
23
24
PtÀBi, OsÀCu, V, Cu, Fe, or even without a
2
7
tions in 2012. Therefore, a clean and mild oxidation
method toward allylic alcohols without isomerization is
highly desirable for both academic preparation and indus-
trial scale production. We have focused on the aerobic
oxidation of alcohols and established a general protocol
for the aerobic oxidation of a wide range of alcohols under
mild conditions using Fe(NO ) 9H O/TEMPO/NaCl as
(
6) (a) Jacobsen, C. B.; Jensen, K. L.; Udmark, J.; Jørgensen, K. A.
Org. Lett. 2011, 13, 4790. (b) Wei, C.- H.; Mannathan, S.; Cheng, C.-H.
Angew. Chem., Int. Ed. 2012, 51, 10592. (c) Fujii, M.; Nishimura, T.;
Koshiba, T.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2013, 15, 232.
(7) (a) Marzinzik, A. L.; Felder, E. R. J. Org. Chem. 1998, 63, 727. (b)
Zhu, Y.; Chuah, G.-K.; Jaenicke, S. J. Catal. 2006, 241, 25. (c) Taber,
D. F.; Nelson, C. G. J. Org. Chem. 2006, 71, 8973. (d) Zhao, G.-L.;
Ibrahem, I.; Sund ꢁe n, H.; C oꢁ rdova, A. Adv. Synth. Catal. 2007, 349, 1210.
e) Zu, L.; Zhang, S.; Xie, H.; Wang, W. Org. Lett. 2009, 11, 1627. (f)
Pe n~ afiel, I.; Pastor, I. M.; Yus, M.; Esteruelas, M. A.; Oliv ꢁa n, M.
(
3
3
2
3
catalysts, yielding the corresponding aldehydes or ketones
Organometallics 2012, 31, 6154.
28
in good to excellent yields. Herein, we report our efforts
in the iron-catalyzed aerobic oxidation of allylic alcohols
with retention of the CÀC double-bond configuration.
We initially tried this oxidation toward geraniol (E-1a)
using 5 mol % Fe(NO ) 9H O, 3 mol % TEMPO, and
(
8) (a) Engel, C. R.; Lessard, J. J. Am. Chem. Soc. 1963, 85, 638. (b)
Kourouli, T.; Kefalas, P.; Ragoussis, N.; Ragoussis, V. J. Org. Chem.
002, 67, 4615. (c) Swenson, R. E.; Sowin, T. J.; Zhang, H. Q. J. Org.
Chem. 2002, 67, 9182. (d) Yamashita, S.; Iso, K.; Hirama, M. Org. Lett.
008, 10, 3413. (e) Reich, H. J.; Reich, I. L.; Renga, J. M. J. Am. Chem.
2
2
Soc. 1973, 95, 5813. (f) Huang, X.; Yang, Y. Org. Lett. 2007, 9, 1667. (g)
Richter, F.; Otto, H.-H. Liebigs Ann. Chem. 1990, 7. (h) Cadierno, V.;
Garcla-Garrido, S. E.; Gimeno, J. Adv. Synth. Catal. 2006, 348, 101. (i)
Shimizu, I.; Tsuji, J. J. Am. Chem. Soc. 1982, 104, 5844. (j) Mitsudo,
T.-A.; Kadokura, M.; Watanabe, Y. J. Org. Chem. 1987, 52, 3186.
(
3
3
3
2
ꢁ
5 mol % NaCl as catalysts in 1,2-dichloethane (Table1,
entry 1). It is interesting to observe that the issue of
isomerization is concentration dependent: when the sub-
strate concentration was reduced to 0.1 mol/L, no isomer-
ization was observed (Table 1, entries 6À9). At a higher
concentration, serious E to Z isomerization was observed
(Table 1, entries 1À5). For considering conversion and
extent of E/Z-isomerization, we have defined 10 mol %
each of Fe(NO ) 9H O, TEMPO, and NaCl in DCE
9) (a) Meng, Q.-H.; Feng, J.-C.; Bian, N.-S.; Liu, B.; Li, C.-C. Synth.
Commun. 1998, 28, 1097. (b) Bora, U.; Chaudhuri, M. K.; Dey, D.;
Kalita, D.; Kharmawphlang, W.; Mandal, G. C. Tetrahedron 2001, 57,
2
445. (c) Gonz ꢁa lez-N uꢁ n~ z, M. E.; Mello, R.; Olmos, A.; Acerete, R.;
Asensio, G. J. Org. Chem. 2006, 71, 1039.
10) (a) Shaabani, A.; Mirzaei, P.; Lee, D. G. Catal. Lett. 2004, 97,
(
1
7
19. (b) Ahmed, M. M.; Cui, H.; O’Doherty, G. A. J. Org. Chem. 2006,
1, 6686. (c) Beckmann, C.; Rattke, J.; Sperling, P.; Heinz, E.; Boland,
W. Org. Biomol. Chem. 2003, 1, 2448.
11) (a) Matovic, N. J.; Hayes, P. Y.; Penman, K.; Lehmann, R. P.;
3
3
2
3
(
(
(
0.1 mol/L of substrate) as standard reaction conditions
Table 1, entry 9).
Changing the loading of NaCl does not affect the E/Z
De Voss, J. J. J. Org. Chem. 2011, 76, 4467. (b) Matovic, N.; Matthias,
A.; Gertsch, J.; Raduner, S.; Bone, K. M.; Lehmann, R. P.; DeVoss, J. J.
Org. Biomol. Chem. 2007, 5, 169. (c) Marshall, J. A.; Crooks, S. L.;
DeHoff, B. S. J. Org. Chem. 1988, 53, 1616.
ratio of the product (Table 2, entries 2À5). As a compar-
sion, when the reaction was conducted in the absence of
NaCl, only 49% of E-2a was obtained with 25% recovery
of E-1a even with a prolonged reaction time of 24 h
(Table 2, entry 1). The exact role of NaCl is still not clear;
(
12) (a) Lin, C.-K.; Lu, T.-J. Tetrahedron 2010, 66, 9688. (b) Chakor,
N. S.; Musso, L.; Dallavalle, S. J. Org. Chem. 2009, 74, 844.
13) For such oxidations with chromium oxides, see: (a) Martinez,
(
Y.; de las Heras, M. A.; Vaquero, J. J.; Garcia-Navio, J. L.; Alvarez-
Builla, J. Tetrahedron Lett. 1995, 36, 8513. (b) Schneider, R.; Gerardin,
P.; Loubinoux, B.; Rihs, G. Tetrahedron 1995, 51, 4997. (c) Brunelet, T.;
Jouitteau, C.; Gelbard, G. J. Org. Chem. 1986, 51, 4016. (d) Desong, P.;
Kell, D. A.; Sidler, D. R. J. Org. Chem. 1985, 50, 2309.
28a
however, as noted in the previous report, we believe that
it may be acting as a ligand to iron.
(14) For such oxidations with MnO
2
, see: (a) Domınguez, M.;
´
ꢁ
Alvarez, R.; Borr ꢂa s, E.; Farr ꢁe s, J.; Pars, X.; de Lera, A. R. Org. Biomol.
Chem. 2006, 4, 155. (b) Valla, A.; Cartier, D.; Laurent, A.; Valla, B.;
Labia, R.; Potier, P. Synth. Commun. 2003, 33, 1195. (c) Stipa, P.; Finet,
J.-P.; Le Moigne, F.; Tordo, P. J. Org. Chem. 1993, 58, 4465. (d) Tsuboi,
S.; Masuda, T.; Takeda, A. J. Org. Chem. 1982, 47, 4478.
Allylic alcohols without such an issue could also be
oxidized to the corresponding aldehydes/ketones in mod-
erate to good yield (Table 3, entries 8À10). Farnesol
(2E,6E-1k, E/Z = 90:10), an acyclic sesquiterpene alcohol
(
15) For such oxidations with hypervalent iodine compounds, see: (a)
Xue, H.; Gopal, P.; Yang, J. J. Org. Chem. 2012, 77, 8933. (b) Martınez-
Bescos, P.; Cagide-Fagın, F.; Roa, L. F.; Ortiz-Lara, J. C.; Kierus, K.;
Ozores-Viturro, L.; Fern ꢁa ndez-Gonz ꢁa lez, M.; Alonso, R. J. Org. Chem.
008, 73, 3745.
16) For such oxidations with other oxidants, see: Nakano, T.; Ishii,
Y.; Ogawa, M. J. Org. Chem. 1987, 52, 4855.
17) (a) Kaneda, K.; Fujii, M.; Morioka, K. J. Org. Chem. 1996, 61,
502. (b) Kakiuchi, N.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Org.
´
´
(23) Hanson, S. K.; Wu, R.; Silks, L. A. Org. Lett. 2011, 13, 1908.
(24) (a) Semmelhack, M. F.; Schmid, C. R.; Cort ꢁe s, D. A.; Chou,
2
C. S. J. Am. Chem. Soc. 1984, 106, 3374. (b) Ragagnin, G.; Betzemeier,
B.; Quici, S.; Knochel, P. Tetrahedron 2002, 58, 3985. (c) Liu, Y.; Ma, S.
Chin. J. Chem. 2012, 30, 29. (d) B €a ckvall, J.-E. Modern Oxidation
Methods, 2nd ed.; Wiley-VCH: Weinheim, 2010. (e) Dijksman, A.; Marino-
Gonz ꢁa lez, A.;Payeras, A. M.;Arends, I. W. C.E.;Sheldon, R.A. J. Am. Chem.
Soc. 2001, 123, 6826.
(25) (a) Yin, W.; Chu, C.; Lu, Q.; Tao, J.; Liang, X.; Liu, R. Adv.
Synth. Catal. 2010, 352, 113. (b) He, X.; Shen, Z.; Mo, W.; Sun, N.; Hu,
B.; Hu, X. Adv. Synth. Catal. 2009, 351, 89. (c) Wang, N.; Liu, R.; Chen,
J.; Liang, X. Chem. Commun. 2005, 5322.
(26) (a) Wang, X.; Liu, R.; Jin, Y.; Liang, X. Chem.;Eur. J. 2008, 14,
2679. (b) Liu, R.; Liang, X.; Dong, C.; Hu, X. J. Am. Chem. Soc. 2004,
126, 4112.
(27) K o€ nning, D.; Hiller, W.; Christmann, M. Org. Lett. 2012, 14,
5258.
(
(
4
Chem. 2001, 66, 6620. (c) Schultz, M. J.; Hamilton, S. S.; Jensen, D. R.;
Sigman, M. S. J. Org. Chem. 2005, 70, 3343. (d) Batt, F.; Bourcet, E.;
Kassab, Y.; Fache, F. Synlett 2007, 12, 1869. (e) Johnston, E. V.; Verho,
O.; K €a rk €a s, M. D.; Shakeri, M.; Tai, C.-W.; Palmgren, P.; Eriksson, K.;
Oscarsson, S.; B €a ckvall, J.-E. Chem.;Eur. J. 2012, 18, 12202.
(18) Tonucci, L.; Nicastro, M.; d’Alessandro, N.; Bressan, M.;
D’Ambrosio, P.; Morvillo, A. Green Chem. 2009, 11, 816.
(
(
19) Muldoon, J.; Brown, S. N. Org. Lett. 2002, 4, 1043.
20) (a) Larock, R. C.; Varaprath, S. J. Org. Chem. 1984, 49, 3435. (b)
Lee, M.; Chang, S. Tetrahedron Lett. 2000, 41, 7507.
(
(
21) Lee, A. F.; Gee, J. J.; Theyers, H. J. Green Chem. 2000, 2, 279.
22) (a) Abad, A.; Almela, C.; Corma, A.; Garcıa, H. Chem. Com-
a, H.
a, H. Pure
(28) (a) Ma, S.; Liu, J.; Li, S.; Chen, B.; Cheng, J.; Kuang, J.; Liu, Y.;
Wan, B.; Wang, Y.; Ye, J.; Yu, Q.; Yuan, W.; Yu, S. Adv. Synth. Catal.
2011, 353, 1005. (b) Liu, J.; Xie, X.; Ma, S. Synthesis 2012, 44, 1569. (c)
Liu, J.; Ma, S. Synthesis 2013, 45, 1624. (d) Liu, J.; Ma, S. Org. Biomol.
Chem. 2013, 11, 4186.
´
mun. 2006, 3178. (b) Abad, A.; Almela, C.; Corma, A.; Garcı
Tetrahedron 2006, 62, 6666. (c) Abad, A.; Corma, A.; Garcı
Appl. Chem. 2007, 79, 1847.
´
´
B
Org. Lett., Vol. XX, No. XX, XXXX