C O M M U N I C A T I O N S
Table 1. HDF Results after 24 h at 22 °C (Ar-CF3 f ArCH3)
In summary, we have demonstrated the first room-temperature
catalytic hydrodefluorination of aliphatic C-F bonds. Our process
utilizes an unconventional method of C-F bond activation that
relies on the abstraction of F- by an electrophilic silylium species.
Although activation of C-F bonds in perfluoroalkanes by this
method remains elusive, it may yet be achieved via utilization of
more robust counterions, such as halogenated carboranes,8,9 and
silanes other than Et3SiH.
Si
−
F conv,
C−
F conv,
a
b
no.
substrate
catalyst
solvent
%
%
TONc
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
A
A
A
A
A
A
B
B
A
neat
75d
65e
38
70
61
126
60
35
61
53
65
63
19
71
o-C6H4Cl2
p-C6H4BrF
p-ClC6H4Me
C6H5F
C6D5Br
o-C6H4Cl2
p-C6H4BrF
100
100
100
100
100
75
73e
22
Acknowledgment. This research was supported by Brandeis
University (start-up funds), Research Corporation (Research In-
novation Award to O.V.O.), and the Nathan and Bertha Richter &
Ernest Grunwald Undergraduate Award to V.J.S.
f
o-C6H4Cl2
81e
100
100
10
11
12
13
14
15
16
17
18
2
2
2
2
2
2
2
2
2
A
A
A
A
A
A
B
B
A
neat
47d
87
97
87
46
67
94
95
27
81
o-C6H4Cl2
p-C6H4BrF
p-ClC6H4Me
C6H5F
C6D5Br
o-C6H4Cl2
p-C6H4BrF
>95e
>95
53
Supporting Information Available: Experimental details and
characterization data. This material is available free of charge via the
100
100
100
100
77
>95
>95e
31
References
f
o-C6H4Cl2
93e
100
(1) (a) Hudlicky, M. Chemistry of Organic Fluorine Compounds; Prentice
Hall: New York, 1992; p 175. (b) Strauss, S. H. Chem. ReV. 1993, 93,
927.
19
20
21
3
3
3
A
A
A
neat
o-C6H4Cl2
o-C6H4Cl2
19d
82
31
75
84
100
100
f
>95e
(2) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.
(3) (a) Victor, D. G.; MacDonald, G. J. Climatic Change 1999, 42, 633. (b)
Roehl, C. M.; Boglu, D.; Bruehl, C.; Moortgat, G. K. Geophys. Res. Lett.
1995, 22, 815. (c) Timms, P. L. J. Chem. Soc., Dalton Trans. 1999, 815.
(4) (a) Aizenberg, M.; Milstein, D. Science 1994, 265, 359. (b) Aizenberg,
M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 8674. (c) Young, R. J.,
Jr.; Grushin, V. V. Organometallics 1999, 18, 294. (d) Yang, H.; Gao,
H.; Angelici, R. Organometallics 1999, 18, 2285.
(5) (a) Clot, E.; Megret, C.; Kraft, B. M.; Eisenstein, O.; Jones, W. D. J. Am.
Chem. Soc. 2004, 126, 5647. (b) Kraft, B. M.; Lachicotte, R. J.; Jones,
W. D. J. Am. Chem. Soc. 2001, 123, 10973. (c) Kraft, B. M.; Lachicotte,
R. J.; Jones, W. D. J. Am. Chem. Soc. 2000, 122, 8559.
22
23
4
4
A
A
neat
o-C6H4Cl2
15d
26
28
31e
60
18
86
24
25
5
5
A
A
neat
o-C6H4Cl2
3d
9e
11d
70e
29
6
8
26
27
28
29
30
31
32
6
6
6
A
A
A
A
A
B
B
neat
21
64
26
72
74
29
8.6
o-C6H4Cl2
p-C6H4BrF
p-ClC6H4Me
C6H5F
o-C6H4Cl2
p-C6H4BrF
6g
6g
6
83
100
100
56
85
(6) (a) Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem. ReV. 1994,
94, 373. (b) Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. Chem. Ber. 1997,
130, 145. (c) Richmond, T. G. In Topics in Organometallic Chemistry;
Murai, S., Ed.; Springer: New York, 1999; Vol. 3, p 243.
33e
10
6
7h
7h
33
34
A
A
neat
o-C6H4Cl2
31d
92e
0d
0
48
28
(7) (a) Deacon, G. B.; Koplick, A. J.; Raverty, W. D.; Vince, D. G. J.
Organomet. Chem. 1979, 182, 121. (b) Deacon, G. B.; Mackinnon, P. I.;
Tuong, T. D. Aust. J. Chem. 1983, 36, 43. (c) Jones, W. D.; Partridge, M.
G.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1991, 264. (d) Lucht,
B. L.; Poss, M. J.; King M. A.; Richmond, T. G. J. Chem. Soc., Chem.
Commun. 1991, 400. (e) Crespo, M.; Martinez, M.; Sales, J. J. Chem.
Soc., Chem. Commun. 1992, 822. (f) Hofmann, P.; Unfried, G. Chem.
Ber. 1992, 125, 659. (g) Belt, S. T.; Helliwell, M.; Jones, W. D.; Partridge,
M. G.; Perutz, R. N. J. Am. Chem. Soc. 1993, 115, 1429. (h) Cronin, L.;
Higgitt, C. L.; Karch, R.; Perutz, R. N. Organometallics 1997, 16, 4920.
(i) Edelbach, B. L.; Rahman, A. K. F.; Lachicotte, R. J.; Jones, W. D.
Organometallics 1999, 18, 3170. (j) Braun, T.; Perutz, R. N. Chem.
Commun. 2002, 2749. (k) Reinhold, M.; McGrady, J. E.; Perutz, R. N. J.
Am. Chem. Soc. 2004, 126, 5268.
100
0
35
36
8
8
A
A
neat
o-C6H4Cl2
0
0
a Fraction of F from the original aliphatic C-F bonds found in the Si-F
bonds of Et3SiF. b The number in this column ) 100% - fraction of C-F
bonds remaining in the starting material. c Number of Si-F bonds made
per molecule of catalyst. d Conversion of Et3SiH (substrate in excess). e Sum
of the Si-F bonds in Et3SiF and Et2SiF2. f Reactions were run in a plastic
vial. g After 45 h. h The product is pentane.
(8) (a) Lambert, J. B.; Kania, L.; Zhang, S. Chem. ReV. 1995, 95, 1191. (b)
Although fairly high turnover numbers were achieved, the
catalyst employed in this study is not living. Its decomposition is
evident by the decrease in the intensity of the B(C6F5)4- signals in
the 19F NMR spectra during the reaction and appearance of B(C6F5)3
and other, unidentified C6F5-containing products. This also pre-
vented us from conducting kinetic studies. Ostensibly, attack on
the anion is a competitive pathway for the highly electrophilic
species (possibly including H+)17 generated in the HDF reactions,
and the inertness of B(C6F5)4- is critical. Even at 110 °C, Et3SiOTf
was not competent as catalyst at all, while B(C6F5)3 (shown to
reversibly abstract H- from Et3SiH)12b gave only ca. 1% conversion
(substrate 1 or 2).
The conversions (by 19F NMR vs an internal C6F6 standard) were
calculated on the basis of either (a) the disappearance of the C-F
signals of the product or (b) the appearance of the Si-F signals.
In nearly all cases, we discovered that there appeared to be fewer
Si-F bonds produced (by ca. 10-20%) than C-F bonds consumed.
We surmised that some of the F in the Si-F bonds is lost over
time to the Si of the glass of the reaction vessels. In support of this
hypothesis, performing the reactions in polypropylene vials resulted
in higher observed Si-F conversions.
Reed, C. A. Acc. Chem. Res. 1998, 31, 325.
(9) (a) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. Science 1993, 262, 402. (b)
Lambert, J. B.; Zhang, S. J. Chem. Soc., Chem. Commun. 1993, 383. (c)
Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13, 2430.
(d) Lambert, J. B.; Zhao, Y. Angew. Chem., Int. Ed. 1997, 36, 400. (e)
Lambert, J. B.; Zhao, Y.; Wu, H.; Tse, W. C.; Kuhlmann, B. J. Am. Chem.
Soc. 1999, 121, 5001. (f) Lambert, J. B.; Lin, L. J. Org. Chem. 2001, 66,
8537. (g) Kim, K.-C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham,
F.; Lin, L.; Lambert, J. B. Science 2002, 297, 825.
(10) (a) Krause, J. R.; Lampe, F. W. J. Phys. Chem. 1977, 81, 281. (b) Krause,
J. R.; Lampe, F. W. J. Am. Chem. Soc. 1976, 98, 7826.
(11) (a) Bahr, S. R.; Boudjouk, P. J. Am. Chem. Soc. 1993, 115, 4514. (b)
Kira, M.; Hino, T.; Sakurai, H. J. Am. Chem. Soc. 1992, 114, 6697.
(12) (a) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J.
Org. Chem. 2000, 65, 6179. (b) Parks, D. J.; Blackwell, J. M.; Piers, W.
E. J. Org. Chem. 2000, 65, 3090.
(13) We also tested some bis(trifluoromethyl)arenes and octafluorotoluene.
While partial consumption of these substrates was observed, we have had
difficulty ascertaining the fate of the arene fragment. See Supporting
Information for details.
(14) Hansch, C.; Leo, A.; Taft, R. W. Chem. ReV. 1991, 91, 165.
(15) This is also supported by the observation of PhCH2C6H4CH3 as a minor
product in the HDF of 1 (GC-MS evidence). This side product probably
forms via the electrophilic attack on toluene by a PhC(H,F)2+ equivalent.
(16) Ferraris, D.; Cox, C.; Anand, R.; Lectka, T. J. Am. Chem. Soc. 1997,
119, 4319.
(17) Reed, C. A.; Kim, K.-C.; Stoyanov, E. S.; Stasko, D.; Tham, F. S.; Mueller,
L. J.; Boyd, P. D. W. J. Am. Chem. Soc. 2003, 125, 1796.
JA0426138
9
J. AM. CHEM. SOC. VOL. 127, NO. 9, 2005 2853