SHORT PAPER
Chemoselective Reduction of Halo-Nitro Aromatic Compounds
(d) Breslow, R. Science 1982, 218, 532.
1557
phase transfer catalyst (probably on the basis of host/guest
phenomena) and as a transition metal catalyst, therefore
constituting an interesting case of supramolecular cataly-
sis.1b,2
(e) Easton, C. J.; Lincoln, S. F. Chem. Soc. Rev. 1996, 25, 163.
(3) Tilloy, S.; Bertzoux, F.; Mortreux, A.; Monflier, E. Catal.
Today 1999, 48, 245.
(4) Reviews of biphasic catalysis:
(a) Borowski, A. F.; Cole-Hamilton, D. J.; Wilkinson, G.
Nouv. J. Chim. 1978, 2, 137.
(b) Barton, M.; Atwood, J. D. J. Coord. Chem. 1991, 24, 43.
(c) Bartik, T.; Bunn, B. B.; Bartik, B.; Hanson, B. E. Inorg.
Chem. 1994, 33, 164.
All reactions were carried out using the standard Schlenk technique.
Solvents were dried and distilled under argon, water was degassed
in vacuo in an ultrasonic bath. The substrates were obtained from
Aldrich or Fluka and were used without further purification. The β-
cyclodextrin-phosphine 1 was prepared according to the literature
procedure.1 The products were analyzed with a GC Hewlett Packard
6890 equipped with a HP-5 column.
(d) Ellis, J. W.; Harrison, K. N.; Hoye, P. A. T.; Orpen, A. G.;
Pringle, P. G.; Smith, M. B. Inorg. Chem. 1992, 31, 3026.
(e) Herrmann, W. A.; Kohlpaintner, C. W. Angew. Chem.
1993, 105, 1588; Angew. Chem. Int. Ed. Engl. 1993, 32, 17.
(f) Horváth, I. T.; Rabai, J. Science 1994, 266, 72.
(g) Joó, F.; Kathó, Á. J. Mol. Catal. A: Chem. 1997, 116, 3.
(h) Chen, J.; Alper, H. J. Am. Chem. Soc. 1997, 119, 893.
(5) (a) Lawrence, F. R.; Marshall, W. J. Aniline In Ullmann’s
Encyclopedia for Industrial Chemistry, 6th ed. (electronic
release), Wiley-VCH: Weinheim, 1998.
Chemoselective Reduction of Halonitro Compounds 3,7 and 9
Using b-Cyclodextrin-Modified Transition Metal catalysts,
General Procedure
A transition metal salt (5 µmol) was added to the solution of 1
(5.5 µmol) in anhyd (free of O2) MeOH (2 mL). After 15 min the
solvent was evaporated in vacuo and the residue was dissolved in
H2O (10 mL) and transferred into an argon flushed steel autoclave
(100 or 200 mL) equipped with a magnetic stirring bar. Then
NaHCO3 (~ 50 mg) and a solution of the halo-nitrobenzene (5
mmol) in toluene (10 mL) were added. The autoclave was pressur-
ized with H2 (20 bar) and heated to the temperature indicated in the
Table under vigorous stirring. At the end of the reaction samples of
the organic phases were collected and analyzed by GC (Table).
(b) Vogt, P. F.; Gerulis, J. J. Amines, aromatic In Ullmann’s
Encyclopedia for Industrial Chemistry, 6th ed. (electronic
release), Wiley-VCH: Weinheim, 1998.
(6) Mais, F.-J.; Paetz, K.-C.; Fiege, H.; Blank, H. U.; vor der
Brueck, D.; Mehl, W. Eur. Pat. Appl. EP 789018 A1, 1997;
Chem. Abstr. 1997, 127, 220 658.
(7) Bahrmann, H.; Cornils, B.; Dierdorf, A.; Haber, S.PCT Int.
Appl. WO 9707087, 1997; Chem. Abstr. 1997, 126 225 099.
(8) Cordier, G.; Grosselin, J. M.; Bailliard, R. M. In Catalysis of
Organic Reactions; Kosak, J. R.; Johnson, T. A., Eds.; (Chem.
Ind. (Dekker), Vol. 53), Dekker: New York, 1994; p 103.
(9) Tafesh, A. M. Weiguny, J. Chem. Rev. 1996, 96, 2035.
(10) Frömbgen, C. Dissertation, Universität Bochum, 1999.
(11) Cornils, B.; Kuntz, E. G. J. Organomet. Chem. 1995, 502,
177.
References
(1) (a) Reetz, M. T.; Waldvogel, S. R. Angew. Chem. 1997, 109,
870; Angew. Chem. Int. Ed. Engl. 1997, 36, 865.
(b) Reetz, M. T. J. Heterocycl. Chem. 1998, 35, 1065.
(2) (a) Wenz, G. Angew. Chem. 1994, 106, 851; Angew. Chem.
Int. Ed. Engl. 1994, 33, 803.
(b) Bender, M. L.; Komiyama, M. Cyclodextrin Chemistry;
Springer: Berlin, 1978.
(c) Tabushi, I. Pure Appl. Chem. 1986, 58, 1529.
Article Identifier:
1437-210X,E;1999,0,09,1555,1557,ftx,en;H01399SS.pdf
Synthesis 1999, No. 9, 1555–1557 ISSN 0039-7881 © Thieme Stuttgart · New York