1408
F. Li et al.
LETTER
(3) (a) Rylander, P. N. Hydrogenation Methods; Academic:
New York, 1985. (b) Hudlicky, M. Reductions in Organic
Chemistry; Ellis Horwood Ltd: Chichester, 1984, 1.
(c) Smith, G. V.; Nothesiz, F. Heterogeneous Catalysis in
Organic Chemistry; Academic: New York, 1999, 71.
(d) Auer, S. M.; Grunwaldt, J. D.; Koppel, R. A.; Baiker, A.
J. Mol. Catal. A: Chem. 1999, 139, 305. (e) Shi, Q.; Lu, R.;
Jin, K.; Zhang, Z.; Zhao, D. Green Chem. 2006, 8, 868.
(f) He, L.; Wang, L.-C.; Sun, H.; Ni, J.; Cao, Y.; He, H.-Y.;
Fan, K.-N. Angew. Chem. Int. Ed. 2009, 48, 9538.
(g) Jagadeesh, R. V.; Wienhofer, G.; Westerhaus, F. A.;
Surkus, A.; Pohl, M.; Junge, H.; Junge, K.; Beller, M. Chem.
Commun. 2011, 47, 10972. (h) Farhadi, S.; Siadatnasab, F.
J. Mol. Catal. A: Chem. 2011, 339, 108.
(4) For reviews on transfer hydrogenation, see: (a) Gladiali, S.;
Mestroni, G. Transition Metals for Organic Synthesis;
Wiley-VCH: Weinheim, 2004. (b) Gladiali, S.; Alberico, E.
Chem. Soc. Rev. 2006, 35, 226. (c) Samec, J. S. M.;
Bäckvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc.
Rev. 2006, 35, 237. (d) Brieger, G.; Nestrick, T. J. Chem.
Rev. 1974, 74, 567.
(5) (a) Wang, Y.; Saha, B.; Frett, B.; Li, F.; Li, H.-Y.
Tetrahedron Lett. 2014, 55, 1281. (b) Saha, B.; Frett, B.;
Wang, Y.; Li, H.-Y. Tetrahedron Lett. 2013, 54, 2340.
(c) Sharma, A.; Li, H.-Y. Synlett 2011, 1407. (d) Li, H.-Y.;
Wang, Y.; McMillen, W. T.; Chatterjee, A.; Toth, J. E.;
Mundla, S. R.; Voss, M.; Boyer, R. D.; Sawyer, J. S.
Tetrahedron 2007, 63, 11763. (e) Sawyer, J. S.; Beight, D.
W.; Ciapetti, P.; Decollo, T. V.; Godfrey, A. G.; Goodson,
T. Jr.; Herron, D. K.; Li, H.-Y.; Liao, J.; McMillen, W. T.;
Miller, S. C.; Mort, N. A.; Yingling, J. M.; Smith, E. C. R.
PCT Int. Appl WO 2002094833, 2002.
(6) (a) Wang, X.; Liang, M.; Zhang, J.; Wang, Y. Curr. Org.
Chem. 2007, 11, 299. (b) Blaser, H.-U.; Steiner, H.; Studer,
M. ChemCatChem. 2009, 1, 210. (c) Quinn, J. F.; Bryant, C.
E.; Golden, K. C.; Gregg, B. T. Tetrahedron Lett. 2010, 51,
786.
M. Chem. Commun. 2010, 46, 1769. (c) Lou, X.-B.; He, L.;
Qian, Y.; Liu, Y.-M.; Cao, Y.; Fan, K.-N. Adv. Synth. Catal.
2011, 353, 281. (d) Sharma, U.; Verma, P. K.; Kumar, N.;
Kumar, V.; Bala, M.; Singh, B. Chem.-Eur. J. 2011, 17,
5903. (e) Mandal, P. K.; McMurray, J. S. J. Org. Chem.
2007, 72. (f) Shi, Q.; Lu, R.; Lu, L.; Fu, X.; Zhao, D. Adv.
Synth. Catal. 2007, 349, 1877. (g) Paul, M.; Pal, N.;
Bhaumik, A. Eur. J. Inorg. Chem. 2010, 5129. (h) Park, Y.
K.; Choi, S. B.; Nam, H. J.; Jung, D.; Ahn, H. C.; Choi, K.;
Furukawa, H.; Kim, J. Chem. Commun. 2010, 46, 3086.
(i) Liu, L.; Qiao, B.; Chen, Z.; Zhang, J.; Deng, Y. Chem.
Commun. 2009, 653. (j) Niemeier, J. K.; Kjell, D. P. Org.
Process Res. Dev. 2013, 17, 1580. (k) Gkizis, P. L.;
Stratakis, M.; Lykakis, I. N. Catal. Commun. 2013, 36, 48.
(9) All microwave experiments were performed using a Biotage
Initiator Classic microwave synthesizer.
(10) Larhed, M.; Olofsson, K. Microwave Methods in Organic
Synthesis; Springer: Berlin, 2006.
(11) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.
H.; Verma, A. K.; Choi, E. H. Molecules 2013, 18, 6620.
(12) General Procedures; Method A: To a mixture of
halogenated nitroarene (1 mmol), Pd/C(5%), and MeOH (5
mL) was added NH2NH2·H2O (10 mmol), and the resulting
solution was heated at 80 °C reflux condition for 5 min. Then
the mixture was filtered and concentrated in vacuo. The
crude material was purified by flash column
chromatography using hexanes and EtOAc. Method B: To a
mixture of halogenated nitroarene (1 mmol), Pd/C(10%),
and MeOH (5 mL) was added NH2NH2·H2O (10 mmol), and
the resulting solution was heated at 120 °C by Biotage
Initiator Classic microwave synthesizer for 15 min. The
mixture was filtered and condensed in vacuo. The crude
material was purified by flash column chromatography
using hexanes and EtOAc.
2-Bromo-5-(tert-butyl)aniline (3a): compound 3a was
prepared in 95% yield according to the general procedure
(Method A). 1H NMR (400 MHz, CDCl3): δ = 7.31 (d, J =
8.4 Hz, 1 H), 6.79 (d, J = 2.3 Hz, 1 H), 6.66 (dd, J = 8.3, 2.4
Hz, 1 H), 4.02 (br s, 2 H), 1.27 (s, 9 H). 13C NMR (100 MHz,
CDCl3): δ = 151.8, 143.5, 132.0, 117.0, 113.1, 106.3, 34.5,
31.2 (3 × C).
(7) Campos, C.; Cecilia, T.; Oportus, M.; Pena, M. A.; Fierro, J.
L. G.; Reyes, P. Catal. Today 2013, 213, 93.
(8) For hydrazine as H source, see: (a) He, L.; Wang, L.; Sun,
H.; Ni, J.; Cao, Y.; He, H.; Fan, K. Angew. Chem. Int. Ed.
2009, 48, 9538. (b) Junge, K.; Wendt, B.; Shaikh, N.; Beller,
Synlett 2014, 25, 1403–1408
© Georg Thieme Verlag Stuttgart · New York