Z. Dong et al.
10. Shokouhimehr M, Asl MS, Mazinani B (2017) Res Chem
Intermed 44:1617–1626
PCOFs and the coordination was relatively weak. All the
products were characterized by 1H NMR.
11. Zhang K, Hong K, Suh JM, Lee TH, Kwon O, Shokouhimehr M,
Jang HW (2018) Res Chem Intermed 45:599–611
12. Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Acc Chem
Res 46:1740–1748
3 Conclusion
13. Zhang H, Liu G, Shi L, Ye J (2018) Adv Energy Mater 8:1701343
14. Liu L, Corma A (2018) Chem Rev 118:4981–5079
15. Dong ZH, Yuan JW, Xiao YM, Mao P, Wang WT (2018) J Org
Chem 83:11067–11073
In conclusion, heterogeneous polyimide based covalent
organic framework was synthesized by the solid-state ther-
mal condensation reaction of melamine with BPDA. Subse-
quently, highly dispersed Pd nanoparticles were successfully
immobilized on PCOFs and its catalytic performance was
evaluated for the Suzuki–Miyaura coupling reaction and ef-
cient reduction of aromatic nitro compounds. The reaction
conditions were environmentally favorable with excellent
yields. For electronically and structurally varied aryl halides,
arylboronic acids and nitroarenes, the Pd@PCOFs catalyst
works efectively to give good to excellent yield of the cor-
responding biphenyl and aniline products. The catalytic
system works in environmentally benign water solvent with
NaBH4 as a hydrogen donor to generate the corresponding
amines under mild reaction conditions. The advantages of
the Pd@PCOFs catalyst are that it is robust and is accessible
from inexpensive raw materials. Furthermore, the catalyst
was easy to separate by simple fltration and reused for three
times. Further studies to elucidate the mechanism of the cur-
rent transformation and to extend the scope of the synthetic
utility are in progress in our laboratory.
16. Liu Y-X, Ma Z-W, Jia J, Wang C-C, Huang M-L, Tao J-C (2010)
Appl Organomet Chem 24:646–649
17. Motevalizadeh SF, Alipour M, Ashori F, Samzadeh-Kermani A,
Hamadi H, Ganjali MR, Aghahosseini H, Ramazani A, Khoobi
M, Gholibegloo E (2018) Appl Organomet Chem 32:e4123
18. Khajehzadeh M, Moghadam M (2018) J Organomet Chem
863:60–69
19. Waller PJ, Gandara F, Yaghi OM (2015) Acc Chem Res
48:3053–3063
20. Ding SY, Wang W (2013) Chem Soc Rev 42:548–568
21. Feng X, Ding X, Jiang D (2012) Chem Soc Rev 41:6010–6022
22. Kandambeth S, Dey K, Banerjee R (2019) J Am Chem Soc
141:1807–1822
23. Gao X, Zou X, Ma H, Meng S, Zhu G (2014) Adv Mater
26:3644–3648
24. Fang Q, Wang J, Gu S, Kaspar RB, Zhuang Z, Zheng J, Guo H,
Qiu S, Yan Y (2015) J Am Chem Soc 137:8352–8355
25. Guo J, Jiang D (2020) ACS Cent Sci 6:869–879
26. Wu C, Liu Y, Liu H, Duan C, Pan Q, Zhu J, Hu F, Ma X, Jiu T, Li
Z, Zhao Y (2018) J Am Chem Soc 140:10016–10024
27. Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang
H, Jiang D (2021) Chem Soc Rev 50:120–242
28. Niakan M, Masteri-Farahani M, Karimi S, Shekaari H (2021) J
Mol Liq 324:115078
29. Niakan M, Asadi Z, Masteri-Farahani M (2019) ChemistrySelect
4:1766–1775
30. Huang P, Zeng X, Du F, Zhang L, Peng X (2019) Catal Lett
150:1011–1019
31. Hooshmand SE, Heidari B, Sedghi R, Varma RS (2019) Green
Chem 21:381–405
Acknowledgements The authors are grateful to the Doctor Fund of
Henan University of Technology (No. 2015BS013) and The Colleges
and Universities Key Research Program Foundation of Henan Prov-
ince (No. 20A150014). The Project was also Supported by State Key
Laboratory of Materials Processing and Die & Mould Technology,
Huazhong University of Science and Technology (P2019-004)
32. Han Y, Di JQ, Zhao AD, Zhang ZH (2019) Appl Organomet Chem
33:e5172
33. Antony R, Marimuthu R, Murugavel R (2019) ACS Omega
4:9241–9250
34. Chakraborty S, Mruthunjayappa MH, Aruchamy K, Singh N,
Prasad K, Kalpana D, Ghosh D, Sanna Kotrappanavar N, Mondal
D (2019) ACS Sustain Chem Eng 7:14225–14235
35. Uberman PM, García CS, Rodríguez JR, Martín SE (2017) Green
Chem 19:739–748
References
36. Du J, Chen J, Xia H, Zhao Y, Wang F, Liu H, Zhou W, Wang B
(2020) ChemCatChem 12:2426–2430
1. Hulsey MJ, Lim CW, Yan N (2020) Chem Sci 11:1456–1468
2. Li Z, Ji SF, Liu YW, Cao X, Tian SB, Chen YJ, Niu ZG, Li YD
(2020) Chem Rev 120:623–682
37. Wang G, Yuan S, Wu ZQ, Liu WY, Zhan HJ, Liang YP, Chen XY,
Ma BJ, Bi SX (2019) Appl Organomet Chem 33:e5159
38. Jiang L, Tian Y, Sun T, Zhu Y, Ren H, Zou X, Ma Y, Meihaus KR,
Long JR, Zhu G (2018) J Am Chem Soc 140:15724–15730
39. Han Y, Zhang M, Zhang Y-Q, Zhang Z-H (2018) Green Chem
20:4891–4900
3. Molnár Á, Papp A (2017) Coord Chem Rev 349:1–65
4. Karimi B, Mansouri F, Mirzaei HM (2015) ChemCatChem
7:1736–1789
5. Gao YX, Ding Y (2020) Chemistry-a European Journal
26:8845–8856
40. Rangel Rangel E, Maya EM, Sánchez F, de la Campa JG, Iglesias
M (2015) Green Chem 17:466–473
6. Gholinejad M, Naghshbandi Z, Najera C (2019) ChemCatChem
11:1792–1823
7. Hong K, Sajjadi M, Suh JM, Zhang K, Nasrollahzadeh M, Jang
HW, Varma RS, Shokouhimehr M (2020) ACS Applied Nano
Materials 3:2070–2103
Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional afliations.
8. Shokouhimehr, Yek, Nasrollahzadeh (2019) Appl. Sci. 9:4183.
9. Kim A, Rafaei SM, Abolhosseini S, Shokouhimehr M (2015)
Energy Environ Focus 4:18–23
1 3