16
D.P. Ivanov et al. / Applied Catalysis A: General 415–416 (2012) 10–16
Table 3
Comparison of DHB preparation via phenol oxidation by N2O and H2O2.
Process parameters
Oxidation by N2O (run no. 5, Table 2)
Oxidation by H2O2 [1]
Rhone Poulenc (HClO4, H3PO4)
Brichima (Fe++/Co++
)
Enichem (TS-1)
Phenol conversion, %
5.9
86
8.4 (14.0a)
74
1.2 (1.4b)
5
90
10
70
10
80
20
50
25
90
12
70
1.0
Phenol selectivity to DHB, %
Phenol selectivity to coke or tars, %
N2O (H2O2) selectivity to DHB, %
HQ:CH ratio
0.71
0.43
a
COx and side products are included in coke.
The ratio calculated for the sum of (HQ + BQ).
b
differently directed. Nevertheless, one can see that parameters pro-
vided by N2O are comparable with those provided by H2O2. It may
anymore as an exotic “laughing gas” as it was the case two decades
ago. Nowadays it is a rather conventional compound whose unique
oxidation chemistry is well studied, and appreciated not only in lab-
oratory research but also in industry [8,31,39]. Recently, two new
commercial oxidation processes have been put in operation first
using the N2O oxidant [40].
[2] J. Sun, X. Meng, Y. Shi, R. Wang, S. Feng, D. Jiang, R. Xu, F.-S. Xiao, J. Catal. 193
(2000) 199–206.
[3] S. Seelan, A.K. Sinha, Appl. Catal. A: Gen. 238 (2003) 201–209.
[4] K. Yube, M. Faruta, N. Aoki, K. Mal, Appl. Catal. A: Gen. 327 (2007) 278–286.
[5] K.M. Parida, S. Singha, P.C. Sahoo, Catal. Lett. 136 (2010) 155–163.
[6] H.S. Abbo, S.J.J. Titinchi, Top. Catal. 53 (2010) 254–264.
[7] E.A. Karakhanov, A.L. Maximov, Y.S. Kardasheva, V.A. Skorkin, S.V. Kardashev,
V.V. Predeina, M.Y. Talanova, E. Lurie-Luke, J.A. Seeley, S.L. Cron, Appl. Catal. A:
Gen. 385 (2010) 62–72.
[8] G.I. Panov, CATTECH 4 (2000) 18.
[9] J. Jia, K.S. Pillay, W.M.H. Sachtler, J. Catal. 221 (2004) 119–126.
[10] I. Yuranov, D.A. Bulushev, A. Renken, L. Kiwi-Minsker, Appl. Catal. A: Gen. 319
(2007) 128–136.
[11] L.V. Pirutko, S.V. Chernyavsky, A.K. Uriarte, G.I. Panov, Appl. Catal. A: Gen. 227
(2002) 143–157.
[12] E.J.M. Hensen, Q. Zhu, M.M.R.M. Hendrich, A.R. Overweg, P.J. Kooyman, M.V.
Sychev, R.A. van Santen, J. Catal. 221 (2004) 560–574.
[13] A. Ribera, I.W.C.E. Arends, S. de Vries, J. Perez-Ramires, R.A. Sheldon, J. Catal.
195 (2000) 287–297.
[14] G. Centi, S. Perathoner, R. Arrigo, G. Giordano, A. Katovic, V. Pedula, Appl. Catal.
A: Gen. 307 (2006) 30–41.
[15] A.J.J. Koekkoek, H. Xin, Q. Yang, C. Li, E.J.M. Hensen, Micropor. Mesopor. Mater.
145 (2011) 172–181.
[16] D. Meloni, R. Monac, V. Solianas, G. Berlier, S. Bordiga, I. Rossetti, C. Oliva, L.
Forni, J. Catal. 214 (2003) 169–178.
[17] K.A. Dubkov, N.S. Ovanesyan, A.A. Shteinman, E.V. Starokon, G.I. Panov, J. Catal.
207 (2002) 341–352.
[18] L. Kiwi-Minsker, D.A. Bulushev, A. Renken, J. Catal. 219 (2003) 273–285.
[19] A.R. Overweg, M.W.J. Craje, A.M. van der Kraan, J.W.C.E. Arends, A. Ribera, R.A.
Sheldon, J. Catal. 223 (2004) 262–270.
5. Conclusion
A formed FeZSM-5 zeolite, having small concentration of iron
and accordingly that of ␣-sites, was studied in detail at 450–500 ◦C
in the oxidation of phenol to DHB by nitrous oxide. For the first
time the reaction was carried out in an automated catalytic setup
specially designed for the gas-phase operation with high-boiling
compounds. It allowed safe catalytic runs with reliable on-line
GC analysis. The results obtained were completed with the data
on coke amount. Deposition of coke on the catalyst surface was
shown to cause a pronounced variation in the isomeric distribution
of DHB, which does not correlate with diffusivities of the product
molecules.
[20] G.D. Pirngruber, J.-D. Grunwaldt, P.K. Roy, J.A. van Bokhoven, O. Safonova, P.
Glatzel, Catal. Today 126 (2007) 127–134.
[21] E. Berrier, O. Ovsitser, E.V. Kondratenko, M. Schwidder, W. Grünert, A. Brückner,
J. Catal. 249 (2007) 67–78.
[22] J.B. Taboada, E.J.M. Hensen, I.W.C.E. Arends, G. Mul, A.R. Overweg, Catal. Today
110 (2005) 221–227.
[23] I. Yuranov, D.A. Bulushev, A. Renken, L. Kiwi-Minsker, J. Catal. 227 (2004)
138–147.
A comparison with the present-day processes based on H2O2
application shows that phenol oxidation by N2O may be considered
as a promising basis for developing an alternative technology of
DHB preparation.
[24] V.S. Chernyavsky, L.V. Pirutko, A.K. Uriarte, A.S. Kharitonov, G.I. Panov, J. Catal.
245 (2007) 466–469.
Supplementary material
[25] G.I. Panov, A.S. Kharitonov, V.I. Sobolev, Appl. Catal. A: Gen. 98 (1993) 1–20.
[26] US Patent 5110995 (1992).
The manuscript has
a supplementary material section. It
[27] A. Costine, T. O’Sillivan, B.K. Hodnett, Catal. Today 99 (2005) 199–208.
[28] D.P. Ivanov, V.I. Sobolev, L.V. Pirutko, G.I. Panov, Adv. Synth. Catal. 344 (2002)
986–995.
[29] E.G. Derouane, S. Determmerie, Z. Gabelica, N. Blom, Appl. Catal. 1 (1981)
201–224.
[30] D.P. Ivanov, M.A. Rodkin, K.A. Dubkov, A.S. Kharitonov, G.I. Panov, Kinet. Catal.
41 (2000) 771–775.
[31] G.I. Panov, A.K. Uriarte, M.A. Rodkin, V.I. Sobolev, Catal. Today 41 (1998)
365–385.
includes: XRD patterns of parent FeZSM-5 zeolite before and after
activation; a picture of catalytic setup used in the work; a typi-
cal pattern of on-line GC analysis; and a list of equations used for
calculating main reaction parameters.
Acknowledgements
[32] L.V. Pirutko, O.O. Parenago, E.V. Lunina, A.S. Kharitonov, L.G. Okkel, G.I. Panov,
React. Kinet. Catal. Lett. 52 (1994) 275–283.
[33] M.V. Parfenov, E.V. Starokon, S.V. Semikolenov, G.I. Panov, J. Catal. 263 (2009)
173–180.
[34] G.K. Boreskov, Heterogeneous Catalysis, Nova Sci. Publ. Inc., NY, 2002, 236 p.
[35] D.P. Ivanov, V.I. Sobolev, G.I. Panov, Appl. Catal. A: Gen. 241 (2003) 113–121.
[36] C. Perego, A. Carati, P. Ingallina, M.A. Mantegazza, G. Belussi, Appl. Catal. A: Gen.
221 (2001) 63–72.
This work was supported by RFBR (Grant No. 11-03-00427-a).
The authors are grateful to E.V. Starokon for the measurement of ␣-
sites concentration, and to A.S. Kharitonov for valuable comments.
Appendix A. Supplementary data
[37] K.A. Dubkov, V.I. Sobolev, E.A. Talsi, M.A. Rodkin, N.H. Watkins, A.A. Shteinman,
G.I. Panov, J. Mol. Catal. 123 (1997) 155–161.
[38] G.I. Panov, K.A. Dubkov, E.V. Starokon, Catal. Today 117 (2006) 148–155.
[39] V.N. Parmon, G.I. Panov, A. Uriarte, A.S. Noskov, Catal. Today 100 (2005)
115–131.
Supplementary data associated with this article can be found, in
References
Up-A-New-Production-Facility-For-0001, November 30, 2009.
[1] B. Notari, Stud. Surf. Sci. Catal. 37 (1988) 413–425.