Table 3
TCH [ms] and T1ρ [ms] values of the compounds
Grant-in-Aids for Scientific Research from the Ministry of Edu-
cation, Culture, Science, Sports, and Technology of Japan.
a
Carbon in alkylammonium cation
C1
C2
C3
C4
C5
Notes and references
CH 9.1 × 10−
1
1
—
—
—
—
5.4 × 10
5.5
1.7 × 10
5.5
1.5 × 10
1.4
—
—
—
—
7.3 × 10
5.1
3.2 × 10
2.4
—
—
—
—
—
—
—
—
1.5
12
C1
C3
C4
T
T
T
T
T
T
T
T
T
T
1ρ 8.9
1 B. S. Lane and K. Burgess, Chem. Rev., 2003, 103, 2457–2473.
2 S. T. Oyama, in Mechanisms in Homogeneous and Heterogeneous Epoxi-
dation Catalysis, ed. S. T. Oyama, Elsevier, Amsterdam, 2008, pp. 1–99.
3 R. Neumann, Prog. Inorg. Chem., 1998, 47, 317–370.
4 I. V. Kozhevnikov, Catalysts for Fine Chemical Synthesis: Catalysis by
Polyoxometalates, Wiley, Chichester, 2002.
5 M. T. Pope, in Comprehensive Coordination Chemistry II, ed.
J. A. McCleverty and T. J. Meyer, Elsevier Pergamon, Amsterdam, 2004,
vol. 4, pp. 635–678.
CH 1.5 × 10− 2.8 × 10
−1
−2
−2
−2
−1
−1
−1
−1
1ρ 4.0
CH 7.5 × 10− 8.5 × 10
1ρ 6.3 5.5
CH 5.5 × 10− 6.5 × 10
1ρ 1.5 2.1
CH 3.5 × 10− 3.5 × 10
1ρ 5.8 7.5
4.2
2
−1
−1
−1
2
C4·EtOAc
C5
1
3.5 × 10
8.7
3.5 × 10
7.5
6
7
8
C. L. Hill, in Comprehensive Coordination Chemistry II, ed.
J. A. McCleverty and T. J. Meyer, Elsevier Pergamon, Amsterdam, 2004,
vol. 4, pp. 679–758.
N. Mizuno, K. Kamata, S. Uchida and K. Yamaguchi, in Modern Hetero-
geneous Oxidation Catalysis, ed. N. Mizuno, Wiley-VCH, Weinheim,
2009, pp. 185–216.
a
Carbon atom which is adjacent to the nitrogen atom is denoted as C1.
+
mobile in the solid bulk. The TCH values of [(n-C H ) N] in C4
4
9 4
J. T. Rhule, W. A. Neiwert, K. I. Hardcastle, B. T. Do and C. L. Hill,
J. Am. Chem. Soc., 2001, 123, 12101–12102.
decreased with the sorption of EtOAc, suggesting that the highly
mobile EtOAc molecules (TCH: ca. 50 ms) interact with the
alkylammonium cations and push their way through the solid
9 K. Yamaguchi, C. Yoshida, S. Uchida and N. Mizuno, J. Am. Chem.
Soc., 2005, 127, 530–531.
10 R. Neumann and H. Miller, J. Chem. Soc., Chem. Commun., 1995,
+
bulk. While the mobility of [(CH ) N] in C1 was relatively
3
4
2277–2278.
high (C1 carbon: 0.91 ms), C1 could not sorb EtOAc so that
reactants and oxidants could not enter and diffuse into the solid
bulk for the catalytic reaction to occur there.
1
1 B. Sels, D. De Vos, M. Buntinx, F. Pierard, A. Kirsch-DeMesmaeker and
P. Jacobs, Nature, 1999, 400, 855–857.
2 K. Kamata, K. Yonehara, Y. Sumida, K. Hirata, S. Nojima and
N. Mizuno, Angew. Chem., Int. Ed., 2011, 50, 12062–12066.
3 K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi and
N. Mizuno, Science, 2003, 300, 964–966.
1
1
1
1
4 N. Mizuno, S. Uchida, K. Kamata, R. Ishimoto, S. Nojima, K. Yonehara
and Y. Sumida, Angew. Chem., Int. Ed., 2010, 49, 9972–9976.
5 While competitive epoxidation of various alkenes with different sizes has
4. Conclusions
In conclusion, all these results show that facile sorption of
solvent molecules (EtOAc), flexibility of the crystal structures of
POM catalysts, and high mobility of alkylammonium cations are
crucial to the uniform distribution of the reactant and oxidant
molecules throughout the solid bulk of the catalyst and the high
catalytic activity of heterogeneous catalysts of alkylammonium
salts of a silicododecatungstate. These results suggest that not
only the atomic structures of the active sites but also the struc-
tures and dynamics of the surroundings is important for the
design and synthesis of highly active heterogeneous catalysts.
1
4
been reported, the substrate scope of C4-catalyzed epoxidation with
in EtOAc has not been investigated. Therefore, we extend
the scope of the present catalytic system by carrying out epoxidation of
–C12 terminal, internal, and cyclic alkenes with H (Table 1).
2 2
H O
C
3
2 2
O
16 G. A. Somorjai, A. M. Contreras, M. Montano and R. M. Rioux, Proc.
Natl. Acad. Sci. U. S. A., 2006, 103, 10577–10583.
1
7 P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen,
B. S. Clausen and H. Topsøe, Science, 2002, 295, 2053–2055.
8 M. Sierka and J. Sauer, J. Phys. Chem. B, 2001, 105, 1603–1613.
9 S. Uchida, K. Inumaru and M. Misono, J. Phys. Chem. B, 2000, 104,
1
1
8108–8115.
2
2
0 H. M. Kao and C. P. Grey, J. Phys. Chem., 1996, 100, 5105–5117.
1 A. Fersht, Structure and Mechanism in Protein Science: A Guide to
Enzyme Catalysis and Protein Folding, W. H. Freeman, New York, 1999.
2 E. Z. Eisenmesser, D. A. Bosco, M. Akke and D. Kern, Science, 2002,
2
2
Acknowledgements
2
95, 1520–1523.
3 Since [(n-C
C6 was not a heterogeneous catalyst.
24 M. A. Neumann, J. Appl. Crystallogr., 2003, 36, 356–365.
6 13 4 4 2 2
H ) N] [γ-SiW10O34(H O) ] [C6] was soluble in EtOAc,
This work was supported in part by the Japan Society for the
Promotion of Science (JSPS) through its Funding Program for
World-Leading Innovative R&D on Science and Technology
2
2
5 G. S. Pawley, J. Appl. Crystallogr., 1981, 14, 357–361.
6 G. E. Engel, S. Wilke, O. König, K. D. M. Harris and F. J. J. Leusen,
J. Appl. Crystallogr., 1999, 32, 1169–1179.
(FIRST Program), the Core Research for Evolutional Science
and Technology (CREST) program of the Japan Science and
Technology Agency (JST), Global COE Program (Chemistry
Innovation through Cooperation of Science and Engineering),
the Development in a New Interdisciplinary Field Based
on Nanotechnology and Materials Science Programs, and
27 H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65–71.
2
8 A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and
W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024–10035.
9 C. A. Fyfe, A. C. Diaz, H. Grondey, A. R. Lewis and H. Förster, J. Am.
Chem. Soc., 2005, 127, 7543–7558.
2
30 S. H. C. Liang and I. D. Gay, Langmuir, 1985, 1, 593–599.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 9979–9983 | 9983