D
M. Kazem-Rostami
Letter
Synlett
(10) (a) Kiehne, U.; Weilandt, T.; Lützen, A. Org. Lett. 2007, 9, 1283.
(b) Banerjee, S.; Bright, S. A.; Smith, J. A.; Burgeat, J.; Martinez-
Calvo, M.; Williams, D. C.; Kelly, J. M.; Gunnlaugsson, T. J. Org.
Chem. 2014, 79, 9272.
(11) (a) Satishkumar, S.; Periasamy, M. Tetrahedron: Asymmetry
2009, 20, 2257. (b) Goswami, S.; Ghosh, K.; Dasgupta, S. J. Org.
Chem. 2000, 65, 1907. (c) Adrian, J.; Wilcox, C. J. Am. Chem. Soc.
1989, 111, 8055. (d) Adrian, J.; Wilcox, C. J. Am. Chem. Soc. 1992,
114, 1398. (e) Valík, M.; Strongin, R. M.; Král, V. Supramol. Chem.
2005, 17, 347. (f) Adrian, J. C. Jr.; Wilcox, C. S. J. Am. Chem. Soc.
1989, 111, 8055. (g) Cowart, M. D.; Sucholeiki, I.; Bukownik, R.
R.; Wilcox, C. S. J. Am. Chem. Soc. 1988, 110, 6204.
(29) Faroughi, M.; Try, A. C.; Klepetko, J.; Turner, P. Tetrahedron Lett.
2007, 48, 6548.
(30) (a) Kamiyama, T.; Sigrist, L.; Cvengroš, J. Synthesis 2016, 48,
3957. (b) Michon, C.; Sharma, A.; Bernardinelli, G.; Francotte, E.;
Lacour, J. Chem. Commun. 2010, 46, 2206. (c) Hamada, Y.;
Mukai, S. Tetrahedron: Asymmetry 1996, 7, 2671.
(31) Sergeyev, S. Helv. Chim. Acta 2009, 92, 415.
(32) Zinelaabidine, C.; Souad, O.; Zoubir, J.; Malika, B.; Nour-Eddine,
A. Int. J. Chem. 2012, 4, 73.
(33) Hu, Y.; Miles, B. T.; Ho, Y.-L. D.; Taverne, M. P. C.; Chen, L.;
Gersen, H.; Rarity, J. G.; Faul, C. F. J. Adv. Opt. Mater. 2017, 5,
1600458.
(12) (a) Abdolmaleki, A.; Heshmat-Azad, S.; Kheradmand-Fard, M.
J. Appl. Polym. Sci. 2011, 122, 282. (b) Shishkanova, T. V.; Havlík,
M.; Král, V.; Kopecký, D.; Matějka, P.; Dendisová, M.; Mirsky, V.
M. Electrochim. Acta 2017, 224, 439.
(13) (a) Tatar, A.; Cejka, J.; Kral, V.; Dolensky, B. Org. Lett. 2010, 12,
1872. (b) Sergeyev, S.; Diederich, F. Angew. Chem. Int. Ed. 2004,
43, 1738. (c) Havlik, M.; Kral, V.; Kaplanek, R.; Dolensky, B. Org.
Lett. 2008, 10, 4767.
(34) Liao, Y.; Weber, J.; Mills, B. M.; Ren, Z.; Faul, C. F. J. Macromole-
cules 2016, 49, 6322.
(35) Synthesis and Characterization of Compound 1
Hünlich’s base (0.56 g, 2.0 mmol, 1.0 equiv) solution in H2SO4
(6.5%, 30 mL) was cooled down to –5 °C. A NaNO2 solution (0.30
g, 4.4 mmol, 2.2 equiv in 5 mL cold H2O) was dropped into the
reaction flask and stirred for 30 min. The resulting yellowish
solution was poured into a solution consisting N-benzylmethyl-
amine (3 mL, excess), Na2CO3 (4.5 g), H2O (60 mL), and MeCN
(30 mL) chilled at –10 °C. The stirring was continued for 3 h
meanwhile the temperature was gradually raised to r.t.; after-
ward, a beige precipitate was extracted from the aqueous
mixture by CH2Cl2 (3 × 50 mL). The CH2Cl2 layers were com-
bined, dried over Na2SO4, and filtered. The evaporation of the
CH2Cl2 gave the crude product which was then purified by chro-
matography to furnish the purified bistriazene compound 1 as a
light-yellow solid. Yield 0.65 g (1.2 mmol, 60%); Rf = 0.3 (silica
gel; MeOH–CH2Cl2, 2% v/v). IR (neat): 3027, 2941, 2893, 2844,
(14) Rigol, S.; Beyer, L.; Hennig, L.; Sieler, J.; Giannis, A. Org. Lett.
2013, 15, 1418.
(15) (a) Vajs, J.; Steiner, I.; Brozovic, A.; Pevec, A.; Ambriović-Ristov,
A.; Matković, M.; Piantanida, I.; Urankar, D.; Osmak, M.;
Košmrlj, J. J. Inorg. Biochem. 2015, 153, 42. (b) Rofouei, M. K.;
Soleymani, R.; Aghaei, A.; Mirzaei, M. J. Mol. Struct. 2016, 1125,
247. (c) Blower, P. J.; Dilworth, J. R. Coord. Chem. Rev. 1987, 76,
121. (d) Gholivand, M. B.; Mohammadi, M.; Rofouei, M. K. Mater.
Sci. Eng., C 2010, 30, 847.
(16) Khazaei, A.; Kazem-Rostami, M.; Zare, A.; Moosavi-Zare, A. R.;
Sadeghpour, M.; Afkhami, A. J. Appl. Polym. Sci. 2013, 129, 3439.
(17) Schneider, P. US 2784167, 1957.
(18) (a) Gholivand, M. B.; Mohammadi, M.; Khodadadian, M.;
Rofouei, M. K. Talanta 2009, 78, 922. (b) Chen, B.; Flatt, A. K.;
Jian, H.; Hudson, J. L.; Tour, J. M. Chem. Mater. 2005, 17, 4832.
(c) Lu, M.; He, T.; Tour, J. M. Chem. Mater. 2008, 20, 7352.
(d) Riskin, M.; Tel-Vered, R.; Willner, I. Adv. Mater. 2010, 22,
1387.
1610, 1486, 1441, 1341, 1173, 1047, 921, 697 cm–1 1H NMR
.
(400 MHz, CDCl3): δ = 7.28–7.38 (m, 12 H, CH), 6.74 (s, 2 H, CH),
4.91–5.02 (q, J = 16.1 Hz, 4 H, NCH2), 4.66–4.70 (d, J = 16.6 Hz, 2
H, CH2), 4.36 (s, 2 H, NCH2N), 4.22–4.26 (d, J = 16.8 Hz, 2 H, CH2),
3.15 (b, 6 H, NCH3), 2.30 (s, 6 H, CH3). 13C NMR (100 MHz,
CDCl3): δ = 147.9, 146.3, 137.1, 129.0, 128.7, 128.6, 128.0, 127.7,
125.1, 112.7, 67.3, 58.8, 34.4, 17.2. MS (ESI+; i-PrOH): m/z [M +
H]+ calcd for [C33H37N8]+: 545.31; found: 545.2. UV-vis: (EtOAc):
λ (lg ε) = 297 (4.465) nm. Anal. Calcd for C33H36N8: C, 72.77; H,
6.66; N, 20.57. Found: C, 72.56; H, 6.85; N, 20.18.
(19) Takacs, J. M.; Vayalakkada, S.; Jiang, X. Organometallics, In
Science of Synthesis: Houben-Weyl Methods of Molecular Trans-
formations;1Vo.
l
Lautens, M., Ed.; Thieme: Stuttgart, 2001, 304–313.
(36) Synthesis and Characterization of Compound 2
(20) Petrovic, M.; Scarpi, D.; Nieger, M.; Jung, N.; Occhiato, E. G.;
Brase, S. RSC Adv. 2017, 7, 9461.
(21) Takagi, K.; Al-Amin, M.; Hoshiya, N.; Wouters, J.; Sugimoto, H.;
Shiro, Y.; Fukuda, H.; Shuto, S.; Arisawa, M. J. Org. Chem. 2014,
79, 6366.
(22) Shang, X.; Xu, L.; Yang, W.; Zhou, J.; Miao, M.; Ren, H. Eur. J. Org.
Chem. 2013, 5475.
(23) Hafner, A.; Hussal, C.; Bräse, S. Synthesis 2014, 46, 1448.
(24) (a) Sun, H.; Huang, Y. Synlett 2015, 26, 2751. (b) Zhang, Y.; Cao,
D.; Liu, W.; Hu, H.; Zhang, X.; Liu, C. Curr. Org. Chem. 2015, 19,
151.
The bistriazene compound 1 (0.54 g, 1.0 mmol, 1.0 equiv) was
poured into a 50 mL round-bottom flask containing CH2Cl2 (20
mL). A solution of trichloroacetic acid (5.0 g, 30 mmol, excess, in
CH2Cl2 (20 mL)) was added and stirred for 2 min. Afterward,
Na2S (0.70 g, 9 mmol, excess) was slowly added to the reaction
flask, as shown in the following figure, and remained sealed
when stirred for 2 hours at r.t. The volume of the resulting yel-
lowish suspension was then reduced to half by nitrogen gas
flow and then refluxed for 30 min. The reaction mixture cooled
down to r.t. and diluted with CH2Cl2 (100 mL), and filtered. The
CH2Cl2 layer was rinsed with cold H2O (5 × 100 mL), dried over
Mg2SO4, and filtered. The CH2Cl2 was removed, and the residue
was purified by column chromatography to obtain a pale-lemon
substance with a mild rotten-egg odour which was then stored
under argon in darkness. Yield 0.06 g (0.19 mmol, 19%); Rf = 0.2
(silica gel, MeOH–CH2Cl2, 4% v/v). IR (neat): 2896, 2847, 2560,
(25) Khazaei, A.; Kazem-Rostami, M.; Moosavi-Zare, A. R.; Bayat, M.;
Saednia, S. Synlett 2012, 23, 1893.
(26) (a) Cao, D.; Zhang, Y.; Liu, C.; Wang, B.; Sun, Y.; Abdukadera, A.;
Hu, H.; Liu, Q. Org. Lett. 2016, 18, 2000. (b) Zhang, Y.; Hu, H.; Liu,
C.-J.; Cao, D.; Wang, B.; Sun, Y.; Abdukader, A. Asian J. Org. Chem.
2016, 6, 102. (c) Moosavi-Zare, A. R.; Zolfigol, M. A.;
Noroozizadeh, E. Synlett 2016, 27, 1682.
(27) Malik, Q. M.; Ijaz, S.; Craig, D. C.; Try, A. C. Tetrahedron 2011, 67,
5798.
(28) Kiehne, U.; Lützen, A. Synthesis 2004, 1687.
1608, 1492, 1474, 1205, 1091, 1010, 811 cm–1 1H NMR (400
.
MHz, CDCl3): δ = 7.62 (br, 2 H, SH), 6.65 (s, 2 H, CH), 6.17 (s, 2 H,
CH), 4.56–4.60 (d, J = 16.7 Hz, 2 H), 4.28 (s, 2 H, NCH2N), 4.17–
4.13 (d, J = 16.8 Hz, 2 H), 2.10 (s, 6 H, 2CH3). 13C NMR (100 MHz,
CDCl3): δ = 143.8, 134.5, 128.6, 127.4, 126.8, 124.7, 67.1, 58.4,
20.9. MS (ESI+; i-PrOH–EtOAc–H2O/0.5% HCO2Na = 90:5:5): m/z
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E