will be the dominant isomer, and the relative product yields
are not sensitive to the initial branching and so to the
temperature. Furthermore, as the exit barrier or exit channel
is well below the energy of the reactants and as RRKM
calculations give reliable results indicating good energy dis-
tribution in the adducts, the energy variation of the reactants
in the 300–10 K range is negligible versus the intermediate
energy formation. The only critical case is when the cyclic
radical from CH addition to double or triple CC bonds
converts to an isomer with a different carbon skeleton
than that from CH insertion. In this case, as isomerization
involving carbon skeleton reorganization could not be com-
petitive with C–H or C–C bond dissociation, the relative
product yields can be sensitive to the initial branching between
addition and insertion if these processes have not the same
addition of the CH radical to the double or triple bond will
be required to verify our proposed branching ratios. However,
as astrochemical, combustion and planetary atmospheric
models use rate constants and branching ratios, we think it
is important to propose branching ratios associated with a
critical discussion. For this purpose, we are currently engaged
in the creation of a new database, KIDA: kinetic database for
astrochemistry (http://kida.obs.u-bordeaux1.fr/), which is an
international project to create an interactive database for
reaction rate coefficient useful in the chemical modeling of
the interstellar chemistry and in planetary atmospheres with
author-submitted discussion on the quality of the data.
Acknowledgements
temperature dependence as suggested by Thiesemann et al. for
9
the CH + C H4 reaction, where insertion could be a
We would like to thank Kevin M. Hickson for proof reading.
The support of this research by the ‘‘Programme National de
Physique et Chimie du Milieu Interstellaire’’ is gratefully
acknowledged.
2
temperature-dependent process. However, this is only the
case for CH + methylacetylene where the main exit channel
is
CH
branching ratio and for CH + propene where addition leads
only to H CQCH–CHQCH + H and insertion leads to
3
CQCH–CHQCH + H and H CQCQCQCH + CH .
H
+
C
4
H
4
with formation of the two isomers
(
2
QCH–CRCH and H CQCQCQCH ) with unknown
2
2
References
2
2
1 W. A. Sanders and M. C. Lin, in Chemical Kinetics of Small
Organic Radicals, ed. Z. B. Alfassi, CRC, Boca Raton, FL, 1986.
H
2
2
2
2
2
E. Herbst, H.-H. Lee, D. A. Howe and T. J. Millar, Mon. Not. R.
Astron. Soc., 1994, 268, 335.
However, for the CH + methylacetylene reaction, we neglect
CH insertion into a CH bond of the methyl group and CH
insertion into the sigma C–C bond. For CH + propene we
increased the uncertainties to take in account the eventual
branching ratio evolution with the temperature.
3
R. P. Wayne, Chemistry of Atmospheres, Clarendon Press, Oxford,
1991.
4
5
R. V. Yelle, F. Herbert and B. R. Sandel, Icarus, 1993, 104, 38–59.
V. A. Krasnopolsky and D. P. Cruikshank, J. Geophys. Res. E,
1
995, 100, 21271–21286.
6 J. E. Butler, J. W. Fleming, L. P. Goss and M. C. Lin, Chem. Phys.,
981, 56, 355–365.
3
À1 À1
In the 15–300 K range and in units of cm molecule
propose an ‘‘educated guess’’ for the rate constants of the
CH + C , C , C (methylacetylene and allene) and
(propene), using the various values for the rate constants
see Table 1) and neglecting the small branching ratios when
their values are within the uncertainties.
s we
1
7
8
9
M. R. Berman, J. W. Fleming, A. B. Harvey and M. C. Lin, Chem.
Phys., 1982, 73, 27.
H. Thiesemann, J. MacNamara and C. A. Taatjes, J. Phys. Chem.
A, 1997, 101, 1881.
2
H
2
2
H
4
3 4
H
3 6
C H
(
H. Thiesemann, E. P. Clifford, C. A. Taatjes and
S. J. Klippenstein, J. Phys. Chem. A, 2001, 105, 5393–5401.
10 A. Canosa, I. R. Sims, D. Travers, I. W. M. Smith and B. R. Rowe,
- HCCCH + H (2.9 Æ 0.4) Â 10À10
CH + C
2
H
2
Astron. Astrophys., 1997, 323, 644.
1
1 N. Daugey, P. Caubet, B. Retail, M. Costes, A. Bergeat and
G. Dorthe, Phys. Chem. Chem. Phys., 2005, 7, 2921–2927.
2 D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just,
J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang,
R. W. Walker and J. Warnatz, Journal of Physical and Chemical
Reference Data, 2005, 34, 757–1397.
-
-
c-C
3
H
2
+ H (0.3 Æ 0.2) Â 10À10
1
(0.2 Æ 0.1) Â 10À10
HCCC + H
2
CH + C
H
2 4
- H
2
CQCQCH
2
+ H
À10
13 W. Boullart, T. Devriendt, R. Borms and J. Peeters, J. Phys.
Chem., 1996, 100, 998.
(T/300)À0.33exp(À14/T)
(
3.5 Æ 0.7) Â 10
1
4 K. McKee, M. A. Blitz, K. J. Hughes, M. J. Pilling, H.-B. Qian,
A. Taylor and P. W. Seakins, J. Phys. Chem., 2003, 107, 5710.
CH + H
3
C–CRCH - H
2
CQCQCQCH
2
+ H
15 S. P. Walch, J. Chem. Phys., 1995, 103, 7064–7071.
16 L. Vereecken, K. Pierloot and J. Petters, J. Chem. Phys., 1998, 108,
4.0 Æ 2.0) Â 10À10
(
1
068–1080.
1
1
1
2
2
2
2
7 L. Vereecken and J. Peeters, J. Phys. Chem. A, 1999, 103,
5523–5533.
8 R. Guadagnini, G. C. Schatz and S. P. Walch, J. Phys. Chem. A,
CH + H CQCQCH - H CQCQCQCH + H
2
2
2
2
(
4.0 Æ 1.0) Â 10À10
1
998, 102, 5857–5866.
9 T. L. Nguyen, A. M. Mebel, S. H. Lin and R. I. Kaiser, J. Phys.
Chem. A, 2001, 105, 11549–11559.
0 R. K. Gosavi, I. Safarik and O. P. Strausz, Can. J. Chem., 1985, 63,
CH + H
3
2 2 2
C–CHQCH - H CQCH–CHQCH + H
(
3.1 Æ 1.8) Â 10À10
1
689–1693.
1 Z.-X. Wang and M.-B. Huang, Chem. Phys. Lett., 1998, 291,
81–386.
2 S. G. Davis, C. K. Law and H. Wang, J. Phys. Chem. A, 1999, 103,
889–5899.
3
-
2 2 3
H CQCQCQCH + CH
(
0.9 Æ 0.6) Â 10À10
5
3 D. Stranges, P. O’Keeffe, G. Scotti, R. Di Santo and
P. L. Houston, Journal of Chemical Physics, 2008, 128,
151101–151104.
Ab initio and RRKM calculations on these systems, particu-
larly for the evolution of the cyclic radical formed after
This journal is ꢀc the Owner Societies 2009
Phys. Chem. Chem. Phys., 2009, 11, 655–664 | 663