Please do not adjust margins
Dalton Transactions
Page 8 of 10
DOI: 10.1039/C7DT02666H
ARTICLE
Journal Name
¥ It should be also noted that the average Co-N bond length
observed herein is also considerably lower than that measured
in the case of related polypyridine cobalt(II) complexes used as
HECs.9
§ The failure to observe a ligand-based reduction in the case of
complexes 3a-c can be related to the fact that this redox event
likely occurs at more negative potentials than experimentally
investigated. On the basis of simple electrostatic considerations,
metal-based reduction processes are indeed expected to
cathodically shift the ligand-based redox event.
5
(a) P. Du, K. Knowles and R. Eisenberg, J. Am. Chem. Soc.,
2008, 130, 12576. (b) A. Fihri, V. Artero, M. Razavet, C.
Baffert, W. Leibl and M. Fontecave, Angew. Chem., Int. Ed.,
2008, 47, 564. (c) W. T. Eckenhoff, W. R. McNamara, P. Du
and R. Eisenberg, Biochim. Biophys. Acta, 2013, 1827, 958.
(d) F. Lakadamyali and E. Reisner, Chem. Commun., 2011, 47
,
1695. (e) M. Natali, R. Argazzi, C. Chiorboli, E. Iengo and F.
Scandola, Chem. Eur. J., 2013, 19, 9261. (f) E. Deponti and M.
Natali, Dalton Trans., 2016, 45, 9136.
(a) S. Losse, J. G. Vos and S. Rau, Coord. Chem. Rev., 2010,
254, 2492. (b) C. C. L. McCrory, C. Uyeda and J. C. Peters, J.
Am. Chem. Soc., 2012, 134, 3164. (c) C. Gimbert-Suriñach, J.
Albero, T. Stoll, J. Fortage, M.-N. Collomb, A. Deronzier, E.
Palomares and A. Llobet, J. Am. Chem. Soc., 2014, 136, 7655.
(d) M. Natali, A. Luisa, E. Iengo and F. Scandola, Chem.
Commun., 2014, 50, 1842. (e) S. Roy, M. Bacchi, G. Berggren
6
7
§§ Blank experiments with 3d and no metal complex were also
performed in order to rule out concomitant proton reduction of
the bare GC electrode25 (see Figure S5 and S6, respectively).
These results confirm that the observed current enhancement in
the presence of acid is fully related to metal-based catalysis in
the case of complexes 3a,b, while direct contribution from the
bare GC electrode cannot be completely ruled out in the case of
complex 3c. Also, the appreciably negative potentials required to
observe a current enhancement in the presence of acetic acid is
such that the catalytic waves cannot be completely defined in all
cases thus preventing any deeper mechanistic investigation of
the HER mechanism. This is, however, out of the scope of the
present manuscript.
‡ An alternative photochemical mechanism, namely oxidative
quenching of the excited sensitizer by the HEC (and HEC−) and
subsequent hole shift from the oxidized dye to the sacrificial
donor, might be in principle operative. However, based on
simple thermodynamic considerations, the reducing power of
the excited states, particularly in the ruthenium case, are not
sufficient to favour direct HEC (and even more HEC−) reduction,
the latter processes being indeed occurring at very cathodic
potentials. Also, based on kinetic considerations, the typically
high donor concentration employed in the photolysis conditions
is such that the reductive quenching pathway is expected to be
kinetically dominating over the competitive, if any, oxidative
quenching.
and V. Artero, ChemSusChem, 2015, 8, 3632.
(a) M. L. Helm, M. P. Stewart, R. M. Bullock, M. Rakowski
DuBois and D. L. DuBois, Science, 2011, 333, 863. (b) M. P.
McLaughlin, T. M. McCormick, R. Eisenberg and P. L. Holland,
Chem. Commun., 2011, 47, 7989. (c) Z. Han, L. Shen, W. W.
Brennessel, P. L. Holland and R. Eisenberg, J. Am. Chem. Soc.,
2013, 135, 14659. (d) M. A. Gross, A. Reynal, J. Durrant and
E. Reisner, J. Am. Chem. Soc., 2014, 136, 356. (e) A. S.
Weingarten, R. V. Kazantsev, L. C. Palmer, M. McClendon, A.
R. Koltonow, A. P. S. Samuel, D. J. Kiebala, M. R. Wasielewski
and S. I. Stupp, Nat. Chem., 2014, 6, 964. (f) P. H. A.
Kankanamalage, S. Mazumder, V. Tiwari, K. K. Kpogo, H. B.
Schelegel and C. N. Verani, Chem. Commun., 2016, 52
13357.
,
8
(a) C. Tard and C. J. Pickett, Chem. Rev., 2009, 109, 2245. (b)
R. Lomoth and S. Ott, Dalton Trans., 2009, 9952. (c) D.
Streich, Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L.
Hammarström and S. Ott, Chem. Eur. J., 2010, 16, 60; (d) S.
Pullen, H. Fei, A. Orthaber, S. Cohen and S. Ott, J. Am. Chem.
Soc., 2013, 135, 16997. (e) G. P. Connor, K. J. Meyer, C. S.
Tribble and W. R. McNamara, Inorg. Chem., 2014, 53, 5408.
(f) A. C. Cavell, C. L. Hartley, D. Liu, C. S. Tribble and W. R.
McNamara, Inorg. Chem., 2015, 54, 3325. (g) C. L. Hartley, R.
J. DiRisio, M. E. Screen, K. J. Mayer and W. R. McNamara,
Inorg. Chem., 2016, 55, 8865.
ǁ The observation that the iridium system always gives raise to
enhanced hydrogen production with respect to the ruthenium-
based one seems to be consistent with the fact that
environmental effects on photocatalysis seem to play a less
important role.
1
(a) N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A.,
2006, 103, 15729. (b) N. Armaroli and V. Balzani, Angew.
Chem., Int. Ed., 2007, 46, 52. (c) J. R. McKone, D. C. Crans, C.
Martin, J. Turner, A. R. Duggal and H. B. Gray, Inorg. Chem.,
2016, 55, 9131.
9
(a) C.-F. Leung, S.-M. Ng, C.-C. Ko, W.-L. Man, J. Wu, L. Chen
and T.-C. Lau, Energy Environ. Sci., 2012, 5, 7903. (b) M.
Nippe, R. S. Khnayzer, J. A. Panetier, D. Z. Zee, B. S. Olaiya, M.
Head-Gordon, C. J. Chang, F. N. Castellano and J. R. Long,
Chem. Sci., 2013, 4, 3934. (c) B. Shan, T. Baine, X. A. N. Ma, X.
2
(a) J. H. Alstrum-Acevedo, M. K. Brennaman and T. J. Meyer,
Inorg. Chem., 2005, 44, 6802. (b) T. R. Cook, D. K. Dogutan, S.
Y. Reece, Y. Surendranath, T. S. Teets and D. G. Nocera,
Chem. Rev., 2010, 110, 6474. (c) D. Gust, T. A. Moore and A.
L. Moore, Faraday Disc., 2012, 155, 9. (d) J. R. McKone, N. S.
Lewis and H. B. Gray, Chem. Mater., 2014, 26, 407. (e) M.
Natali and F. Scandola. Supramolecular Artificial
Photosynthesis. G. Bergamini, S. Silvi (eds.), Applied
Zhao and R. H. Schmehl, Inorg. Chem., 2013, 52, 4853. (d) C.
Bachmann, M. Guttentag, B. Spingler and R. Alberto, Inorg.
Chem., 2013, 52, 6055. (e) R. S. Khnayzer, V. A. Thoi, M.
Nippe, A. E. King, J. W. Jurss, K. A. El Roz, J. R. Long, C. J.
Chang and F. N. Castellano, Energy Environ. Sci., 2014, 7,
1477. (f) L. Tong, R. Zong and R. P. Thummel, J. Am. Chem.
Soc., 2014, 136, 4881. (g) E. Deponti, A. Luisa, M. Natali, E.
Iengo and F. Scandola, Dalton Trans., 2014, 43, 16345. (h) A.
Call, Z. Codolá, F. Acuña-Pares and J. Lloret-Fillol, Chem. Eur.
J., 2014, 20, 6171. (i) D. Z. Zee, T. Chantarojsiri, J. R. Long and
C. J. Chang, Acc. Chem. Res., 2015, 48, 2027. (j) N. Queyriaux,
R. T. Jane, J. Massin, V. Artero and M. Chavarot-Kerlidou,
Coord. Chem. Rev., 2015, 304-305, 3. (k) W. K. C. Lo, C. E.
Castillo, R. Gueret, J. Fortage, M. Rebarz, M. Sliwa, F.
Thomas, C. J. McAdam, G. B. Jameson, D. A. McMorran, J. D.
Crowley, M.-N. Collomb and A. G. Blackman, Inorg. Chem.,
2016, 55, 4564. (l) M. Natali, E. Badetti, E. Deponti, M.
Gamberoni, F. A. Scaramuzzo, A. Sartorel and C. Zonta,
Dalton Trans., 2016, 45, 14764.
Photochemistry, Lecture Notes in Chemistry 92
10.1007/978-3-319-31671-0_1, Springer 2016.
, DOI:
3
4
(a) V. Artero, M. Chavarot-Kerlidou and M. Fontecave,
Angew. Chem., Int. Ed., 2011, 50, 7238. (b) W. T. Eckenhoff,
and R. Eisenberg, Dalton Trans., 2012, 41, 13004. (c) J. R.
McKone, S. C. Marinescu, B. S. Brunschwig, J. R. Winkler and
H. B. Gray, Chem. Sci., 2014, 5, 865.
(a) Y. Halpin, M. T. Pryce, S. Rau, D. Dini and J. G. Vos, Dalton
Trans. 2013, 42, 16243. (b) Z. Han and R. Eisenberg, Acc.
Chem. Res., 2014, 47, 2537. (c) K. Ladomenou, M. Natali, E.
Iengo, G. Charalampidis, F. Scandola and A. G. Coutsolelos,
Coord. Chem. Rev., 2015, 304-305, 38. (d) M. Wang, K. Han, 10 (a) F. A. Scaramuzzo, G. Licini and C. Zonta, Chem. Eur. J.,
S. Zhang and L. Sun, Coord. Chem. Rev., 2015, 287, 1.
2013, 19, 16809. (b) E. Badetti, K. Wurst, G. Licini and C.
Zonta, Chem. Eur. J., 2016, 22, 6515. (c) R. Berardozzi, E.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins