B. K. Bhuyan et al. / Tetrahedron Letters 52 (2011) 2649–2651
2651
Table 2
Acknowledgments
Synthesis of homoallylic alcohols using Ti-ZSM-5 catalyst
Sl. No.
1
Aldehyde (a)
Product (b)
T (h)
Yielda
81
Financial Support from UGC (NERO) and DST is gratefully
acknowledged. A.J.B. thanks UGC for research fellowship. The
authors thank IIT Guwahati for analytical data.
CHO
OH
10
Supplementary data
CHO
OH
2
3
4
10
8
83
85
72
Cl
Supplementary data associated with this article can be found, in
Cl
CHO
OH
References and notes
F
F
1. Venuto, P. B. Microporous Mater. 1994, 2, 297–411.
CHO
OH
2. (a) Kumar, P.; Kumar, R.; Pandey, B. Synlett 1995, 289–298; (b) Saxton, R. J. Top.
Catal. 1999, 9, 43–57; (c) Perego, C.; Carati, A.; Ingallina, P.; Mantegazza, M. A.;
Bellussi, G. Appl. Catal., A: General 2001, 221, 63–72.
3. (a) Marshall, J. A. Chem. Rev. 2000, 100, 3163–3186; (b) Marshall, J. A. Chem.
Rev. 1996, 96, 31–48; (c) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207–
2293; (d) Nishigaichi, Y.; Takuwa, A.; Naruta, Y.; Maruyama, K. Tetrahedron
1993, 49, 7395–7426; (e)Roush, W. R., Ed.Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon: Oxford, UK, 1991; Vol.
2,.
12
O2N
O2N
CHO
OH
5
6
7
8
8
79
83
85
80
MeO
MeO
CHO
OH
4. Ishihara, K.; Mouri, M.; Gao, Q.; Maruyama, T.; Furuta, K.; Yamamoto, H. J. Am.
Chem. Soc. 1993, 115, 11490–11495.
5. Marx, A.; Yamamoto, H. Synlett 1999, 584–586.
8
6. (a) Aspinall, H. C.; Browning, A. F.; Greeves, N.; Ravenscroft, P. Tetrahedron Lett.
1994, 35, 4639–4840; (b) Aspinall, H. C.; Greeves, N.; McIver, E. G. Tetrahedron
Lett. 1998, 39, 9283–9286; (c) Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini,
C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001–7002; (d) Keck, G. E.;
Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467–8468; (e) Gauthier,
D. R.; Carreira, E. M. Angew. Chem., Int. Ed. 1996, 35, 2363–2365; (f) Kii, S.;
Maruoka, K. Tetrahedron Lett. 2001, 42, 1935–1939; (g) Hanawa, H.; Uraguchi,
D.; Konishi, S.; Hashimoto, T.; Maruoka, K. Chem. Eur. J. 2003, 9, 4405–4413; (h)
Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708–1709.
7. Casolari, S.; Cozzi, P. G.; Orioli, P.; Tagliavini, E.; Umani-Ronchi, A. Chem.
Commun. 1997, 2123–2124.
8. Motoyama, Y.; Narusawa, H.; Nishiyama, H. Chem. Commun. 1999, 131–132.
9. Nishiyama, Y.; Kakushou, F.; Sonoda, N. Tetrahedron Lett. 2005, 46, 787–789.
10. Hachiya, I.; Kobayashi, S. J. Org. Chem. 1993, 58, 6958–6960.
11. Lingaiah, B. V.; Ezikiel, G.; Yakaiah, T.; Reddy, G. V.; Rao, P. S. Tetrahedron Lett.
2006, 47, 4315–4318.
12. (a) Bartoli, G.; Bosco, M.; Giuliani, A.; Marcantoni, E.; Palmieri, A.; Petrini, M.;
Sambri, L. J. Org. Chem. 2004, 69, 1290–1297; (b) Bartoli, G.; Giuliani, A.;
Marcantoni, E.; Massaccesi, M.; Melchiorre, P.; Lanari, S.; Sambri, L. Adv. Synth.
Catal. 2005, 347, 1673–1680.
13. (a) Nakamura, H.; Asao, N.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1995,
1273–1274; (b) Nakamura, H.; Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996,
118, 6641–6647; (c) Yao, Q.; Sheets, M. J. Org. Chem. 2006, 71, 5384–5387.
14. (a) Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc.
1996, 118, 4723–4724; (b) Yanagisawa, A.; Nakashima, H.; Nakatsuka, Y.;
Ishiba, A.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2001, 74, 1129–1137; (c) Wang,
C.-J.; Shi, M. Eur. J. Org. Chem. 2003, 2823–2828; (d) Cesarotti, E.; Araneo, S.;
Rimoldi, I.; Tassi, S. J. Mol. Catal. A: Chem. 2003, 204, 221–226; (e) Shi, M.; Sui,
W.-S. Tetrahedron: Asymmetry 2000, 11, 773–779.
CHO
OH
10
12
Br
Br
CHO
CHO
OH
OH
9
16
16
74
71
( )5
( )5
CHO
10
OH
CHO
OH
OH
11b
12c
10
10
81
82
Cl
Cl
Cl
Cl
CHO
a
b
c
Isolated yield after chromatographic purification.
Recovered catalyst was reused (1st run).
Recovered catalyst was reused (2nd run).
15. Kalita, H. R.; Borah, A. J.; Phukan, P. Tetrahderon Lett. 2007, 48, 5047–5049.
16. Yu, L.; Chen, D.; Li, J.; Wang, P. G. J. Org. Chem. 1997, 62, 3575–3581.
17. Weissberg, A.; Portnoy, M. Chem. Commun. 2003, 1538–1539.
18. Li, G.-L.; Zhao, G. Org. Lett. 2006, 8, 633–636.
19. (a) Phukan, P. J. Org. Chem. 2004, 69, 4005–4006; (b) Kalita, H. R.; Phukan, P.
Synth. Commun. 2005, 35, 485–491; (c) Kalita, P.; Phukan, P. Tetrahderon Lett.
2008, 49, 5495–5497; (d) Kataki, D.; Phukan, P. Tetrahderon Lett. 2009, 50,
1958–1960.
20. Kulkarni, S. J.; Srinivasu, P.; Narender, N.; Raghavan, K. V. Catal. Commun. 2003,
3, 113–117.
21. (a) Flanigen, E. M.; Khatami, H.; Szymanski, H. A. Adv. Chem. Ser. 1971, 101,
201–221; Szostak, R. Molecular Sieves, Principles of Synthesis and Modification;
Van Nostrand Reinhold: New York, 1989.
and an aldehyde containing a double bond viz. cinnamaldehyde
(entries 9 and 10). All compounds were characterized by compar-
ing the NMR and IR values with those reported in the literature.
Reusability of the catalyst was examined in case of 4-chlorobenz-
aldehyde. The recovered catalyst was dried under vacuum oven
at 60 °C for 6 h before use. The catalyst could be reused success-
fully for two times without significant loss of activity (Table 2, en-
tries 11 and 12).
Ti-exchanged ZSM-5 was synthesized by treating ZSM-5 with
an aqueous solution of TiCl4 at room temperature. The newly
developed catalyst was found to be an active heterogeneous cata-
lyst for allylation of aldehyde with allyltributylstannane. Ti-ZSM-5
with 0.4 wt % of titanium was found to be more active catalyst than
that containing 1.34 wt % of titanium.
22. Typical procedure: To
a mixture of aldehyde (1 mmol) and Ti-ZSM-5
(0.35 mmol) in toluene (1 mL) allyltributylstannane (1.05 mmol) was added
and the reaction was stirred for appropriate time (TLC). After completion of the
reaction, catalyst was filtered off and the solvent was evaporated to get the
crude product. The crude product was purified by column chromatography
over silica gel (230–400 mesh) using petroleum ether–ethyl acetate mixture as
eluent.