Breeding of C. utilis for Efficient Production of L-Lactic Acid
1823
shown), and this is consistent with recent reports that
lactic acid-producing S. cerevisiae strains require oxy-
4) Dequin S and Barre P, Biotechnology, 12, 173–177 (1994).
5)
6)
7)
Porro D, Brambilla L, Ranzi BM, Martegani E, and Alberghina
L, Biotechnol. Prog., 11, 294–298 (1995).
1
2,47)
gen for the generation of ATP.
Since the growth
Adachi E, Torigoe M, Sugiyama M, Nikawa J, and Shimizu K,
J. Ferment. Bioeng., 86, 284–289 (1998).
rate of Cupdc1ꢁ4-LDH2 was comparable to that of
Cupdc1ꢁ4 (Fig. 3B), it was assumed that Cupdc1ꢁ4-
LDH2 had the ability to generate enough respiration-
metabolism to obtain sufficient ATP under micro-
aerobic conditions. However, further study is needed
to confirm these hypotheses.
Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T,
Kitamoto K, and Takahashi H, Appl. Environ. Microbiol., 71,
1964–1970 (2005).
8
9
)
)
Skory CD, J. Ind. Microbiol. Biotechnol., 30, 22–27 (2003).
Bianchi MM, Brambilla L, Protani F, Liu CL, Lievense J, and
Porro D, Appl. Environ. Microbiol., 67, 5621–5625 (2001).
Cupdc1ꢁ4-LDH2 had the highest ability to produce
ꢀ
1
0) Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D,
Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, and
Alberghina L, Appl. Environ. Microbiol., 65, 4211–4215 (1999).
L-lactic acid at 35 C, although it produced high
concentrations of L-lactic acid over a range of temper-
ꢀ
atures, spanning 25 to 35 C. This feature is similar to a
previous report that PDC in C. utilis was induced only at
11) Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E,
Kitamoto K, and Takahashi H, Appl. Biochem. Biotechnol., 131,
795–807 (2006).
ꢀ
48)
permissive growth temperatures, 5 to 35 C, and that the
ꢀ
12) Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E,
Kitamoto K, and Takahashi H, Appl. Environ. Microbiol., 71,
highest activity was detected at 35 C. Accordingly,
ꢀ
the high expression of CuPDC at 35 C might contribute
2
789–2792 (2005).
to the large production of L-lactic acid at that temper-
ature. This relatively high optimal temperature is also
advantageous because lactic acid at high concentrations
easily becomes solidified in the medium due to low
solubility. Usually, fermentation of S. cerevisiae and
K. lactis is limited at lower temperatures from 30 to
1
1
3) Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E,
Kitamoto K, and Takahashi H, Biosci. Biotechnol. Biochem., 70,
1148–1153 (2006).
4) Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo
A, and Takahashi H, Appl. Microbiol. Biotechnol., 82, 883–890
(
2009).
1
1
5) Branduardi P, Sauer M, De Gioia L, Zampella G, Valli M,
Mattanovich D, and Porro D, Microb. Cell Fact., 5, 4 (2006).
6) Bianchi MM, Tizzani L, Destruelle M, Frontali L, and
Wesolowski-Louvel M, Mol. Microbiol., 19, 27–36 (1996).
ꢀ
5–7,9–14)
3
2 C.
The pH value of the medium also appeared to be
important for the production of L-lactic acid, since a
previous study showed that adjustment of pH was
17) Zeeman AM, Luttik MA, Thiele C, van Dijken JP, Pronk JT,
and Steensma HY, Microbiology, 144 (Pt 12), 3437–3446
3
5)
effective for the high expression of PDC in C. utilis.
(
1998).
8) Boze H, Moulin G, and Galzy P, Crit. Rev. Biotechnol., 12, 65–
6 (1992).
However, the limited research equipment in the present
study did not enable us to control this during the
fermentation shown in Fig. 3 (strain, Cupdc1ꢁ4-LDH2;
medium, YPD10 with CaCO3), and the initial pH of 6.6
finally dropped to 4.0 (data not shown). This decrease in
pH was more likely due to the accumulation of a major
acidic product, L-lactic acid (pKa = 3.86). Therefore,
exact control of pH might further improve the efficiency
of L-lactic acid production.
1
1
8
9) Ichii T, Takehara S, Konno H, Ishida T, Sato H, Suzuki A, and
Yamazumi K, J. Ferment. Bioeng., 75, 375–379 (1993).
20) Li Y, Wei G, and Chen J, Appl. Microbiol. Biotechnol., 66, 233–
242 (2004).
2
2
2
1) Kurtzman CP and Fell JW, ‘‘The Yeast, A Taxonomic Study’’
Fourth edition, Elsevier Science B.V., Amsterdam (1998).
2) Kondo K, Saito T, Kajiwara S, Takagi M, and Misawa N,
J. Bacteriol., 177, 7171–7177 (1995).
There are other advantages to fermentative production
by C. utilis. For example, it is known to produce
3) Kondo K, Miura Y, Sone H, Kobayashi K, and Iijima H, Nat.
Biotechnol., 15, 453–457 (1997).
24) Miura Y, Kettoku M, Kato M, Kobayashi K, and Kondo K,
4
9)
significant amounts of invertase, which is valuable
when sucrose-containing molasses is used as a growth
medium. Cupdc1ꢁ4-LDH2 was found to produce
L-lactic acid with a yield of 94.8% when grown in
YP-based media containing 100 g/l of sucrose for 33 h
J. Mol. Microbiol. Biotechnol., 1, 129–134 (1999).
2
2
2
5) Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, and Misawa
N, Appl. Environ. Microbiol., 64, 1226–1229 (1998).
6) Miura Y, Kondo K, Shimada H, Saito T, Nakamura K, and
Misawa N, Biotechnol. Bioeng., 58, 306–308 (1998).
7) Ikushima S, Minato T, and Kondo K, Biosci. Biotechnol.
Biochem., 73, 152–159 (2009).
(
densities,
data not shown). Also, C. utilis can ferment at high cell
which should contribute to increasing
50,51)
production efficiency. Taking all this, the recombinant
C. utilis Cupdc1ꢁ4-LDH2 strain probably holds great
promise for the industrial production of L-lactic acid.
28) Ikushima S, Fujii T, and Kobayashi O, Biosci. Biotechnol.
Biochem., 73, 879–884 (2009).
2
9) Sambrook J, Fritsch EF, and Maniatis T, ‘‘Molecular Cloning, a
Laboratory Manual,’’ Cold Spring Harbor Laboratory Press,
Cold Spring Harbor (1989).
Acknowledgments
3
0) Rose MD, Winston F, and Hieter P, ‘‘Methods in Yeast
Genetics,’’ Cold Spring Harbor Laboratory Press, Cold Spring
Harbor (1990).
We wish to thank Hiroshi Ashigai, Hideyuki
Tamakawa, Fumi Osawa, and Maiko Nakamura for
valuable discussion and technical assistance throughout
the course of this study.
31) Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, and Misawa
N, Appl. Environ. Microbiol., 64, 2676–2680 (1998).
3
3
2) Kondo K, Kajiwara S, and Misawa N, International Patent
WO95/32289 (Nov. 30, 1995).
3) Ishiguro N, Osame S, Kagiya R, Ichijo S, and Shinagawa M,
Gene, 91, 281–285 (1990).
References
1)
2)
3)
Hofvendahl K and Hahn-H a¨ gerdal B, Enzyme Microb. Technol.,
0, 301–307 (1997).
Hofvendahl K and Hahn-H a¨ gerdal B, Enzyme Microb. Technol.,
6, 87–107 (2000).
34) Shi NQ, Cruz J, Sherman F, and Jeffries TW, Yeast, 19, 1203–
1220 (2002).
2
35) Chen AK, Breuer M, Hauer B, Rogers PL, and Rosche B,
Biotechnol. Bioeng., 92, 183–188 (2005).
2
Olmos-Dichara A, Ampe F, Uribelarrea JL, Pareilleux A, and
Goma G, Biotechnol. Lett., 19, 709–714 (1997).
36) Kaliterna J, Weusthuis RA, Castrillo JI, Van Dijken JP, and
Pronk JT, Yeast, 11, 317–325 (1995).