Journal of the American Chemical Society
Article
(2) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett.
1987, 405.
(3) Hutchings, G. J. J. Catal. 1985, 96, 292.
(4) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006,
Oxidation of allyl alcohol to acrolein occurs via three
different reaction pathways over the Au(111) surface, dictated
by the relative populations of atomic oxygen and hydroxyl
species on the surface. Similar results have not been observed in
the TPD spectra for oxidation of simple alcohols on the
Au(111) surface, which may suggest that allylic alcohols and
simple alcohols react differently in the presence of various
surface intermediates or that aldehydes produced on the surface
during oxidation of simple alcohols by an analogous mechanism
are retained on the surface in structures that desorb at higher
temperatures.
Our observations may provide insight into the pathways for
oxidation of alcohols over gold surfaces, in both vapor- and
liquid-phase systems. Our results suggest that allyl alcohol is
most readily oxidized to acrolein via oxygen adatoms on the
Au(111) surface. If a single allyl alcohol molecule encounters
multiple surface oxygen adatoms, then this process can occur at
very low temperatures. A hydroxyl species can also oxidize the
reactive intermediate, allyloxide, but does so via a process with
a higher activation barrier. Yet another oxidative pathway
involves the generation of surface oxygen by hydroxyl
recombination, followed by oxidation via the low-temperature
pathway. This process may dominate in the high-pH conditions
under which alcohol oxidation has been shown to occur readily
over gold catalysts.
Our work may also aid in the general understanding of the
reactivity of oxygen and hydroxyl species on gold surfaces. Such
reactions are of great interest, considering the enhancement
effect many gold catalysts display upon interaction with water.
Water is present to some extent in most catalytic systems,
whether as an impurity, reactant, product, or solvent.
Accordingly, water may have unknown/unexplored effects on
a host of catalytic reactions. Therefore, thorough consideration
of the effects of water is necessary when assessing a catalytic
system, particularly when oxidation reactions are involved.
45, 7896.
(5) Bond, G. C.; Thompson, D. T. Catal. Rev.−Sci. Eng. 1999, 41,
319.
(6) Haruta, M.; Date, M. Appl. Catal. A Gen. 2001, 222, 427.
́
(7) Haruta, M. Chem. Rec. 2003, 3, 75.
(8) Gong, J. Chem. Rev. 2012, 112, 2987.
(9) Gong, J.; Mullins, C. B. Acc. Chem. Res. 2009, 42, 1063.
(10) Pan, M.; Brush, A. J.; Pozun, Z. D.; Ham, H. C.; Yu, W.-Y.;
Henkelman, G.; Hwang, G. S.; Mullins, C. B. Chem. Soc. Rev. 2013, 42,
5002.
(11) Pan, M.; Gong, J.; Dong, G.; Mullins, C. B. Acc. Chem. Res.
2014, 47, 750.
(12) Madix, R. J.; Friend, C. M.; Liu, X. J. Catal. 2008, 258, 410.
(13) Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709.
(14) Rodriguez, J. A.; Senanayake, S. D.; Stacchiola, D.; Liu, P.;
Hrbek, J. Acc. Chem. Res. 2014, 47, 773.
(15) Rodriguez, J. A. Catal. Today 2011, 160, 3.
(16) Prati, L.; Rossi, M. J. Catal. 1998, 176, 552.
(17) Davis, S. E.; Ide, M. S.; Davis, R. J. Green Chem. 2013, 15, 17.
(18) Abad, A.; Concepcion
Int. Ed. 2005, 44, 4066.
́
, P.; Corma, A.; García, H. Angew. Chem.,
(19) Biella, S.; Rossi, M. Chem. Commun. 2003, 378.
(20) Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am.
Chem. Soc. 2004, 126, 10657.
(21) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.;
Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.;
Hutchings, G. J. Science 2006, 311, 362.
(22) Gong, J.; Mullins, C. B. J. Am. Chem. Soc. 2008, 130, 16458.
(23) Gong, J.; Flaherty, D. W.; Yan, T.; Mullins, C. B.
ChemPhysChem 2008, 9, 2461.
(24) Yan, T.; Gong, J.; Mullins, C. B. J. Am. Chem. Soc. 2009, 131,
16189.
(25) Liu, X.; Friend, C. M. Langmuir 2010, 26, 16552.
(26) Liu, X.; Xu, B.; Haubrich, J.; Madix, R. J.; Friend, C. M. J. Am.
Chem. Soc. 2009, 131, 5757.
(27) Xu, B.; Madix, R. J.; Friend, C. M. J. Am. Chem. Soc. 2010, 132,
16571.
(28) Xu, B.; Liu, X.; Haubrich, J.; Friend, C. M. Nat. Chem. 2010, 2,
61.
(29) Deng, X.; Min, B. K.; Liu, X.; Friend, C. M. J. Phys. Chem. B
2006, 110, 15982.
(30) Abad, A.; Almela, C.; Corma, A.; García, H. Chem. Commun.
2006, 3178.
ASSOCIATED CONTENT
* Supporting Information
■
S
Displacement of H216O from walls of UHV chamber by allyl
alcohol, acrolein and allyl alcohol desorption from the clean
Au(111) surface, and DFT-calculated reaction energy diagrams
for acrolein production on the Au(111) surface. This material is
(31) Davis, J. L.; Barteau, M. A. J. Mol. Catal. 1992, 77, 109.
(32) Shekhar, R.; Barteau, M. A. Surf. Sci. 1994, 319, 298.
(33) Abad, A.; Corma, A.; García, H. Pure Appl. Chem. 2007, 79,
1847.
(34) Mullen, G. M.; Gong, J.; Yan, T.; Pan, M.; Mullins, C. B. Top.
Catal. 2013, 56, 1499.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(35) Ide, M. S.; Davis, R. J. Acc. Chem. Res. 2014, 47, 825.
́
(36) Date, M.; Okumura, M.; Tsubota, S.; Haruta, M. Angew. Chem.,
Int. Ed. 2004, 43, 2129.
ACKNOWLEDGMENTS
■
(37) Ojeda, M.; Zhan, B.-Z.; Iglesia, E. J. Catal. 2012, 285, 92.
(38) Ojifinni, R. A.; Froemming, N. S.; Gong, J.; Pan, M.; Kim, T. S.;
White, J. M.; Henkelman, G.; Mullins, C. B. J. Am. Chem. Soc. 2008,
130, 6801.
(39) Kim, T. S.; Gong, J.; Ojifinni, R. A.; White, J. M.; Mullins, C. B.
J. Am. Chem. Soc. 2006, 128, 6282.
(40) Gao, F.; Wood, T. E.; Goodman, D. W. Catal. Lett. 2009, 134, 9.
(41) Bond, G. C.; Thompson, D. T. Gold Bull. 2000, 33, 41.
(42) Schubert, M. M.; Venugopal, A.; Kahlich, M. J.; Plzak, V.; Behm,
R. J. J. Catal. 2004, 222, 32.
(43) Huang, J.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M.
Angew. Chem., Int. Ed. 2009, 48, 7862.
We are thankful for the generous support of the Department of
Energy (DE-FG02-04ER15587 [C.B.M.] and DE-FG02-
13ER16428 [G.H.]) and the Welch Foundation (Grants F-
1436 [C.B.M.] and F-1841 [G.H.]). G.M.M. acknowledges the
National Science Foundation for a Graduate Research Fellow-
ship. Cara R. Touretzky and Richard C. Pattison are gratefully
acknowledged for aid with instrument optimization.
REFERENCES
■
(1) Bond, G. C.; Sermon, P. A.; Webb, G.; Buchanan, D. A.; Wells, B.
J. Chem. Soc., Chem. Commun. 1973, 5.
6497
dx.doi.org/10.1021/ja502347d | J. Am. Chem. Soc. 2014, 136, 6489−6498